1920edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 556814183 - Original comment: **
 
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The 1920 division divides the octave into 1920 equal parts of exactly 0.625 cents each. It is distinctly consistent through the 25 limit, and in terms of 23-limit [[Tenney-Euclidean_temperament_measures#TE simple badness|relative error]], only [[1578edo|1578]] and [[1889edo|1889]] are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31, 37, 41, 43 and 47 limits, nothing beats it. Because of this and because it is a highly composite number divisible by 12, it is another candidate for [[Interval_size_measure|interval size measure]].
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-17 12:55:32 UTC</tt>.<br>
: The original revision id was <tt>556814183</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 1920 division divides the octave into 1920 equal parts of exactly 0.625 cents each. It is distinctly consistent through the 25 limit, and in terms of 23-limit [[Tenney-Euclidean temperament measures#TE simple badness|relative error]], only [[1578edo|1578]] and [[1889edo|1889]] are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31, 37, 41, 43 and 47 limits, nothing beats it. Because of this and because it is a highly composite number divisible by 12, it is another candidate for [[interval size measure]].


1920 = 2^7 * 3 * 5; some of its divisors are [[10edo|10]], [[12edo|12]], [[15edo|15]], [[16edo|16]], [[24edo|24]], [[60edo|60]], [[80edo|80]], [[96edo|96]], [[128edo|128]], [[240edo|240]], [[320edo|320]] and [[640edo|640]].</pre></div>
1920 = 2^7 * 3 * 5; some of its divisors are [[10edo|10]], [[12edo|12]], [[15edo|15]], [[16edo|16]], [[24edo|24]], [[60edo|60]], [[80edo|80]], [[96edo|96]], [[128edo|128]], [[240edo|240]], [[320edo|320]] and [[640edo|640]].
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;1920edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 1920 division divides the octave into 1920 equal parts of exactly 0.625 cents each. It is distinctly consistent through the 25 limit, and in terms of 23-limit &lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures#TE simple badness"&gt;relative error&lt;/a&gt;, only &lt;a class="wiki_link" href="/1578edo"&gt;1578&lt;/a&gt; and &lt;a class="wiki_link" href="/1889edo"&gt;1889&lt;/a&gt; are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31, 37, 41, 43 and 47 limits, nothing beats it. Because of this and because it is a highly composite number divisible by 12, it is another candidate for &lt;a class="wiki_link" href="/interval%20size%20measure"&gt;interval size measure&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
1920 = 2^7 * 3 * 5; some of its divisors are &lt;a class="wiki_link" href="/10edo"&gt;10&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/15edo"&gt;15&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16&lt;/a&gt;, &lt;a class="wiki_link" href="/24edo"&gt;24&lt;/a&gt;, &lt;a class="wiki_link" href="/60edo"&gt;60&lt;/a&gt;, &lt;a class="wiki_link" href="/80edo"&gt;80&lt;/a&gt;, &lt;a class="wiki_link" href="/96edo"&gt;96&lt;/a&gt;, &lt;a class="wiki_link" href="/128edo"&gt;128&lt;/a&gt;, &lt;a class="wiki_link" href="/240edo"&gt;240&lt;/a&gt;, &lt;a class="wiki_link" href="/320edo"&gt;320&lt;/a&gt; and &lt;a class="wiki_link" href="/640edo"&gt;640&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

The 1920 division divides the octave into 1920 equal parts of exactly 0.625 cents each. It is distinctly consistent through the 25 limit, and in terms of 23-limit relative error, only 1578 and 1889 are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31, 37, 41, 43 and 47 limits, nothing beats it. Because of this and because it is a highly composite number divisible by 12, it is another candidate for interval size measure.

1920 = 2^7 * 3 * 5; some of its divisors are 10, 12, 15, 16, 24, 60, 80, 96, 128, 240, 320 and 640.