Lumatone mapping for 15edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Yourmusic Productions (talk | contribs)
Add a bit more explanation.
ArrowHead294 (talk | contribs)
mNo edit summary
Line 1: Line 1:
{{Lumatone mapping intro}} Ways to organise its intervals that make it easy to find consonant chords, in order of increasing compression are:
{{Lumatone mapping intro}} The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings.


== [[Porcupine]] ==
== [[Porcupine]] ==

Revision as of 16:48, 26 March 2025

There are many conceivable ways to map 15edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings.

Porcupine

0
2
3
5
7
9
11
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
8
10
12
14
1
3
5
7
9
11
13
0
2
4
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
0
2
4
6
8
10
12
14
1
3
5
7
9
11
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
10
12
14
1
3
2
4

Blackwood

13
1
0
3
6
9
12
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
12
0
3
6
9
12
0
3
8
11
14
2
5
1
4

Hanson

9
13
12
1
5
9
13
11
0
4
8
12
1
5
9
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
12
1
5
9
13
2
6
10
14
3
7
11
0
4
12
1
5
9
13
2
6
10
14
3
7
8
12
1
5
9
13
2
6
8
12
1
5
9
4
8


ViewTalkEditLumatone mappings 
12edo13edo14edoLumatone mapping for 15edo16edo17edo18edo