2L 21s: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
m Intervals stub |
||
Line 7: | Line 7: | ||
== Scale tree == | == Scale tree == | ||
{{Scale tree}} | {{Scale tree}} | ||
{{stub}} |
Revision as of 23:27, 15 December 2024
↖ 1L 20s | ↑ 2L 20s | 3L 20s ↗ |
← 1L 21s | 2L 21s | 3L 21s → |
↙ 1L 22s | ↓ 2L 22s | 3L 22s ↘ |
┌╥┬┬┬┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬┬┬┬┬┐ │║││││││││││║││││││││││││ │││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sssssssssssLssssssssssL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
2L 21s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 2 large steps and 21 small steps, repeating every octave. 2L 21s is related to 2L 7s, expanding it by 14 tones. Generators that produce this scale range from 573.9 ¢ to 600 ¢, or from 600 ¢ to 626.1 ¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
22|0 | 1 | LssssssssssLsssssssssss |
21|1 | 12 | LsssssssssssLssssssssss |
20|2 | 23 | sLssssssssssLssssssssss |
19|3 | 11 | sLsssssssssssLsssssssss |
18|4 | 22 | ssLssssssssssLsssssssss |
17|5 | 10 | ssLsssssssssssLssssssss |
16|6 | 21 | sssLssssssssssLssssssss |
15|7 | 9 | sssLsssssssssssLsssssss |
14|8 | 20 | ssssLssssssssssLsssssss |
13|9 | 8 | ssssLsssssssssssLssssss |
12|10 | 19 | sssssLssssssssssLssssss |
11|11 | 7 | sssssLsssssssssssLsssss |
10|12 | 18 | ssssssLssssssssssLsssss |
9|13 | 6 | ssssssLsssssssssssLssss |
8|14 | 17 | sssssssLssssssssssLssss |
7|15 | 5 | sssssssLsssssssssssLsss |
6|16 | 16 | ssssssssLssssssssssLsss |
5|17 | 4 | ssssssssLsssssssssssLss |
4|18 | 15 | sssssssssLssssssssssLss |
3|19 | 3 | sssssssssLsssssssssssLs |
2|20 | 14 | ssssssssssLssssssssssLs |
1|21 | 2 | ssssssssssLsssssssssssL |
0|22 | 13 | sssssssssssLssssssssssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 52.2 ¢ |
Major 1-mosstep | M1ms | L | 52.2 ¢ to 600.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 104.3 ¢ |
Major 2-mosstep | M2ms | L + s | 104.3 ¢ to 600.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0 ¢ to 156.5 ¢ |
Major 3-mosstep | M3ms | L + 2s | 156.5 ¢ to 600.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0 ¢ to 208.7 ¢ |
Major 4-mosstep | M4ms | L + 3s | 208.7 ¢ to 600.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0 ¢ to 260.9 ¢ |
Major 5-mosstep | M5ms | L + 4s | 260.9 ¢ to 600.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0 ¢ to 313.0 ¢ |
Major 6-mosstep | M6ms | L + 5s | 313.0 ¢ to 600.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 7s | 0.0 ¢ to 365.2 ¢ |
Major 7-mosstep | M7ms | L + 6s | 365.2 ¢ to 600.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 8s | 0.0 ¢ to 417.4 ¢ |
Major 8-mosstep | M8ms | L + 7s | 417.4 ¢ to 600.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 9s | 0.0 ¢ to 469.6 ¢ |
Major 9-mosstep | M9ms | L + 8s | 469.6 ¢ to 600.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 10s | 0.0 ¢ to 521.7 ¢ |
Major 10-mosstep | M10ms | L + 9s | 521.7 ¢ to 600.0 ¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 11s | 0.0 ¢ to 573.9 ¢ |
Perfect 11-mosstep | P11ms | L + 10s | 573.9 ¢ to 600.0 ¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | L + 11s | 600.0 ¢ to 626.1 ¢ |
Augmented 12-mosstep | A12ms | 2L + 10s | 626.1 ¢ to 1200.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | L + 12s | 600.0 ¢ to 678.3 ¢ |
Major 13-mosstep | M13ms | 2L + 11s | 678.3 ¢ to 1200.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | L + 13s | 600.0 ¢ to 730.4 ¢ |
Major 14-mosstep | M14ms | 2L + 12s | 730.4 ¢ to 1200.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | L + 14s | 600.0 ¢ to 782.6 ¢ |
Major 15-mosstep | M15ms | 2L + 13s | 782.6 ¢ to 1200.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | L + 15s | 600.0 ¢ to 834.8 ¢ |
Major 16-mosstep | M16ms | 2L + 14s | 834.8 ¢ to 1200.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | L + 16s | 600.0 ¢ to 887.0 ¢ |
Major 17-mosstep | M17ms | 2L + 15s | 887.0 ¢ to 1200.0 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | L + 17s | 600.0 ¢ to 939.1 ¢ |
Major 18-mosstep | M18ms | 2L + 16s | 939.1 ¢ to 1200.0 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | L + 18s | 600.0 ¢ to 991.3 ¢ |
Major 19-mosstep | M19ms | 2L + 17s | 991.3 ¢ to 1200.0 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | L + 19s | 600.0 ¢ to 1043.5 ¢ |
Major 20-mosstep | M20ms | 2L + 18s | 1043.5 ¢ to 1200.0 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | L + 20s | 600.0 ¢ to 1095.7 ¢ |
Major 21-mosstep | M21ms | 2L + 19s | 1095.7 ¢ to 1200.0 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | L + 21s | 600.0 ¢ to 1147.8 ¢ |
Major 22-mosstep | M22ms | 2L + 20s | 1147.8 ¢ to 1200.0 ¢ | |
23-mosstep | Perfect 23-mosstep | P23ms | 2L + 21s | 1200.0 ¢ |
Scale tree
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |