55edo: Difference between revisions
ArrowHead294 (talk | contribs) |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 9: | Line 9: | ||
== Theory == | == Theory == | ||
55edo can be used for a [[meantone]] tuning, and is close to [[1/6-comma meantone]] (and is almost exactly 10/57-comma meantone. | 55edo can be used for a [[meantone]] tuning, and is close to [[1/6-comma meantone]] (and is almost exactly 10/57-comma meantone). {{w|Georg Philipp Telemann|Telemann}} suggested it as a theoretical basis for analyzing the [[meantone intervals|intervals of meantone]], in which he was followed by {{w|Leopold Mozart|Leopold}} and {{w|Wolfgang Amadeus Mozart|Wolfgang Mozart}}. It can also be used for [[Meantone family|mohajira and liese]] temperaments. It also supports an extremely sharp tuning of [[huygens|Huygens/undecimal meantone]] using the 55de [[val]], meaning that primes 7 and 11 are mapped very sharply to their second-best mapping. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 20: | Line 20: | ||
{| class="wikitable center-1 right-2 left-3" | {| class="wikitable center-1 right-2 left-3" | ||
|- | |- | ||
! [[Degree|#]] | ! [[Degree|#]] | ||
! [[Cent]]s | ! [[Cent]]s | ||
! Approximate Ratios | ! Approximate Ratios | ||
! colspan="3" | [[Ups and downs notation | ! colspan="3" | [[Ups and downs notation]] | ||
|- | |- | ||
| 0 | | 0 | ||
Line 417: | Line 417: | ||
| D | | D | ||
|} | |} | ||
<nowiki>* | <nowiki />* 55f val (tending flat), inconsistent intervals labeled in ''italic'' | ||
== Approximation to JI == | == Approximation to JI == | ||
Line 430: | Line 430: | ||
! rowspan="2" | [[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br />8ve Stretch (¢) | ||
! colspan="2" | Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
Line 462: | Line 462: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br>Ratio* | ! Associated<br />Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 500: | Line 501: | ||
|- | |- | ||
| 5 | | 5 | ||
| 17\55<br>(5\55) | | 17\55<br />(5\55) | ||
| 370.9<br>(109.1) | | 370.9<br />(109.1) | ||
| 99/80<br>(16/15) | | 99/80<br />(16/15) | ||
| [[Quintosec]] | | [[Quintosec]] | ||
|- | |- | ||
| 11 | | 11 | ||
| 23\55<br>(3\55) | | 23\55<br />(3\55) | ||
| 501.8<br>(65.5) | | 501.8<br />(65.5) | ||
| 4/3<br>(36/35) | | 4/3<br />(36/35) | ||
| [[Hendecatonic]] (55) | | [[Hendecatonic]] (55) | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]] | |||
== Instruments == | == Instruments == | ||
Line 518: | Line 520: | ||
=== Modern renderings === | === Modern renderings === | ||
; {{W|Johann Sebastian Bach}} | ; {{W|Johann Sebastian Bach}} | ||
* [https://www.youtube.com/watch?v=oymJKnYzzOw "Jesus bleibet meine Freude" from ''Herz und Mund und Tat und Leben'', BWV 147] (1723) | * [https://www.youtube.com/watch?v=oymJKnYzzOw "Jesus bleibet meine Freude" from ''Herz und Mund und Tat und Leben'', BWV 147] (1723) – arranged for two organs, rendered by Claudi Meneghin (2021) | ||
* [https://www.youtube.com/watch?v=Y5sIjh_Te40 "Contrapunctus 4" from ''The Art of Fugue'', BWV 1080] ( | * [https://www.youtube.com/watch?v=Y5sIjh_Te40 "Contrapunctus 4" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024) | ||
* [https://www.youtube.com/watch?v=QOPxqNgkVWM "Contrapunctus 11" from ''The Art of Fugue'', BWV 1080] ( | * [https://www.youtube.com/watch?v=QOPxqNgkVWM "Contrapunctus 11" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024) | ||
; {{W|Nicolaus Bruhns}} | ; {{W|Nicolaus Bruhns}} | ||
* [https://www.youtube.com/watch?v=OfOt3nOp-f8 ''Prelude in E Minor "The Great"''] | * [https://www.youtube.com/watch?v=OfOt3nOp-f8 ''Prelude in E Minor "The Great"''] – rendered by Claudi Meneghin (2023) | ||
* [https://www.youtube.com/watch?v=tuIPIhSxUPs ''Prelude in E Minor "The Little"''] | * [https://www.youtube.com/watch?v=tuIPIhSxUPs ''Prelude in E Minor "The Little"''] – rendered by Claudi Meneghin (2024) | ||
; {{W|Scott Joplin}} | ; {{W|Scott Joplin}} | ||
* [https://www.youtube.com/watch?v=GbhpuoIJgxk ''Maple Leaf Rag''] (1899) | * [https://www.youtube.com/watch?v=GbhpuoIJgxk ''Maple Leaf Rag''] (1899) – arranged for harpsichord and rendered by Claudi Meneghin (2024) | ||
; {{W|Wolfgang Amadeus Mozart}} | ; {{W|Wolfgang Amadeus Mozart}} | ||
* [https://www.youtube.com/watch?v=C_AML6XW-2g ''Rondo alla Turca'' from the Piano Sonata No. 11, KV 331] (1778) | * [https://www.youtube.com/watch?v=C_AML6XW-2g ''Rondo alla Turca'' from the Piano Sonata No. 11, KV 331] (1778) – rendered by Francium (2023) | ||
* [https://www.youtube.com/watch?v=XgRksdk6zyQ ''Fugue in G minor'', KV 401] (1782) | * [https://www.youtube.com/watch?v=XgRksdk6zyQ ''Fugue in G minor'', KV 401] (1782) – rendered by Francium (2023) | ||
* [http://www.seraph.it/dep/int/AdagioKV540.mp3 ''Adagio in B minor'', KV 540] (1788) | * [http://www.seraph.it/dep/int/AdagioKV540.mp3 ''Adagio in B minor'', KV 540] (1788) – rendered by Carlo Serafini (2011) ([http://www.seraph.it/blog_files/706c4662272db7703def4d57edfcb955-119.html blog entry]) | ||
* [https://www.youtube.com/watch?v=pFjJCj2MBTM ''Allegro'' from the Piano Sonata No. 16, KV 545] (1788) | * [https://www.youtube.com/watch?v=pFjJCj2MBTM ''Allegro'' from the Piano Sonata No. 16, KV 545] (1788) – rendered by Francium (2023) | ||
; {{W|Keiichi Okabe}} | ; {{W|Keiichi Okabe}} | ||
* [https://www.youtube.com/watch?v=L24G4Y7tZgI ''Yuutsu no Yuutsu''] (2006) | * [https://www.youtube.com/watch?v=L24G4Y7tZgI ''Yuutsu no Yuutsu''] (2006) – rendered by MortisTheneRd (2024) | ||
=== 21st century === | === 21st century === |
Revision as of 23:32, 28 October 2024
← 54edo | 55edo | 56edo → |
Theory
55edo can be used for a meantone tuning, and is close to 1/6-comma meantone (and is almost exactly 10/57-comma meantone). Telemann suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by Leopold and Wolfgang Mozart. It can also be used for mohajira and liese temperaments. It also supports an extremely sharp tuning of Huygens/undecimal meantone using the 55de val, meaning that primes 7 and 11 are mapped very sharply to their second-best mapping.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.77 | +6.41 | -8.83 | -7.55 | -5.86 | +10.38 | +2.64 | +4.14 | +7.94 | +9.22 | +4.45 |
Relative (%) | -17.3 | +29.4 | -40.5 | -34.6 | -26.9 | +47.6 | +12.1 | +19.0 | +36.4 | +42.3 | +20.4 | |
Steps (reduced) |
87 (32) |
128 (18) |
154 (44) |
174 (9) |
190 (25) |
204 (39) |
215 (50) |
225 (5) |
234 (14) |
242 (22) |
249 (29) |
Subsets and supersets
Since 55 factors into 5 × 11, 55edo contains 5edo and 11edo as its subsets.
Intervals
# | Cents | Approximate Ratios | Ups and downs notation | ||
---|---|---|---|---|---|
0 | 0.0 | 1/1 | P1 | perfect 1sn | D |
1 | 21.8 | 65/64, 78/77, 99/98, 128/125 | ^1 | up 1sn | ^D |
2 | 43.6 | 36/35, 64/63 | ^^1 | dup 1sn | ^^D |
3 | 65.5 | 28/27 | vvm2 | dudminor 2nd | vvEb |
4 | 87.3 | 21/20, 18/17, 25/24 | vm2 | downminor 2nd | vEb |
5 | 109.1 | 16/15, 17/16 | m2 | minor 2nd | Eb |
6 | 130.9 | 13/12, 14/13 | ^m2 | upminor 2nd | ^Eb |
7 | 152.7 | 12/11, 11/10 | ~2 | mid 2nd | vvE |
8 | 174.5 | vM2 | downmajor 2nd | vE | |
9 | 196.4 | 9/8, 10/9 | M2 | major 2nd | E |
10 | 218.2 | 17/15 | ^M2 | upmajor 2nd | ^E |
11 | 240.0 | 8/7 | ^^M2 | dupmajor 2nd | ^^E |
12 | 261.8 | 7/6 | vvm3 | dudminor 3rd | vvF |
13 | 283.6 | 13/11 | vm3 | downminor 3rd | vF |
14 | 305.5 | 6/5 | m3 | minor 3rd | F |
15 | 327.3 | ^m3 | upminor 3rd | ^F | |
16 | 349.1 | 11/9, 27/22 | ~3 | mid 3rd | ^^F |
17 | 370.9 | 26/21, 16/13 | vM3 | downmajor 3rd | vF# |
18 | 392.7 | 5/4 | M3 | major 3rd | F# |
19 | 414.5 | 14/11 | ^M3 | upmajor 3rd | ^F# |
20 | 436.4 | 9/7 | ^^M3 | dupmajor 3rd | ^^F# |
21 | 458.2 | 21/16 | vv4 | dud 4th | vvG |
22 | 480.0 | v4 | down 4th | vG | |
23 | 501.8 | 4/3, 27/20 | P4 | perfect 4th | G |
24 | 523.6 | ^4 | up 4th | ^G | |
25 | 545.5 | 11/8, 15/11 | ~4 | mid 4th | ^^G |
26 | 567.3 | 18/13 | vA4 | downaug 4th | vG# |
27 | 589.1 | 7/5, 24/17 | A4, vd5 | aug 4th, downdim 5th | G#, vAb |
28 | 610.9 | 10/7, 17/12 | ^A4, d5 | upaug 4th, dim 5th | ^G#, Ab |
29 | 632.7 | 13/9 | ^d5 | updim 5th | ^Ab |
30 | 654.5 | 16/11, 22/15 | ~5 | mid 5th | vvA |
31 | 676.4 | v5 | down 5th | vA | |
32 | 698.2 | 3/2, 40/27 | P5 | perfect 5th | A |
33 | 720.0 | ^5 | up 5th | ^A | |
34 | 741.8 | 32/21 | ^^5 | dup 5th | ^^A |
35 | 763.6 | 14/9 | vvm6 | dudminor 6th | vvBb |
36 | 785.5 | 11/7 | vm6 | downminor 6th | vBb |
37 | 807.3 | 8/5 | m6 | minor 6th | Bb |
38 | 829.1 | 21/13, 13/8 | ^m6 | upminor 6th | ^Bb |
39 | 850.9 | 18/11, 44/27 | ~6 | mid 6th | vvB |
40 | 872.7 | vM6 | downmajor 6th | vB | |
41 | 894.5 | 5/3 | M6 | major 6th | B |
42 | 916.4 | 22/13 | ^M6 | upmajor 6th | ^B |
43 | 938.2 | 12/7 | ^^M6 | dupmajor 6th | ^^B |
44 | 960.0 | 7/4 | vvm7 | dudminor 7th | vvC |
45 | 981.8 | 30/17 | vm7 | downminor 7th | vC |
46 | 1003.6 | 16/9, 9/5 | m7 | minor 7th | C |
47 | 1025.5 | ^m7 | upminor 7th | ^C | |
48 | 1047.3 | 11/6, 20/11 | ~7 | mid 7th | ^^C |
49 | 1069.1 | 13/7, 24/13 | vM7 | downmajor 7th | vC# |
50 | 1090.9 | 15/8, 32/17 | M7 | major 7th | C# |
51 | 1112.7 | 40/21, 17/9, 48/25 | ^M7 | upmajor 7th | ^C# |
52 | 1134.5 | 56/27 | ^^M7 | dupmajor 7th | ^^C# |
53 | 1156.4 | 35/18, 63/32 | vv8 | dud 8ve | vvD |
54 | 1178.2 | 128/65, 77/39, 196/99, 125/64 | v8 | down 8ve | vD |
55 | 1200.0 | 2/1 | P8 | perfect 8ve | D |
* 55f val (tending flat), inconsistent intervals labeled in italic
Approximation to JI

Selected just intervals by error
The following tables show how 15-odd-limit intervals are represented in 55edo. Prime harmonics are in bold; inconsistent intervals are in italics.
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
9/7, 14/9 | 1.280 | 5.9 |
11/9, 18/11 | 1.683 | 7.7 |
11/6, 12/11 | 2.090 | 9.6 |
13/7, 14/13 | 2.611 | 12.0 |
15/8, 16/15 | 2.640 | 12.1 |
11/7, 14/11 | 2.963 | 13.6 |
3/2, 4/3 | 3.773 | 17.3 |
13/9, 18/13 | 3.890 | 17.8 |
13/10, 20/13 | 3.968 | 18.2 |
7/6, 12/7 | 5.053 | 23.2 |
13/11, 22/13 | 5.573 | 25.5 |
11/8, 16/11 | 5.863 | 26.9 |
5/4, 8/5 | 6.414 | 29.4 |
7/5, 10/7 | 6.579 | 30.2 |
9/8, 16/9 | 7.546 | 34.6 |
13/12, 24/13 | 7.664 | 35.1 |
15/13, 26/15 | 7.741 | 35.5 |
9/5, 10/9 | 7.858 | 36.0 |
15/11, 22/15 | 8.504 | 39.0 |
7/4, 8/7 | 8.826 | 40.5 |
11/10, 20/11 | 9.541 | 43.7 |
5/3, 6/5 | 10.187 | 46.7 |
15/14, 28/15 | 10.352 | 47.4 |
13/8, 16/13 | 10.381 | 47.6 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
9/7, 14/9 | 1.280 | 5.9 |
11/9, 18/11 | 1.683 | 7.7 |
11/6, 12/11 | 2.090 | 9.6 |
15/8, 16/15 | 2.640 | 12.1 |
11/7, 14/11 | 2.963 | 13.6 |
3/2, 4/3 | 3.773 | 17.3 |
13/10, 20/13 | 3.968 | 18.2 |
7/6, 12/7 | 5.053 | 23.2 |
11/8, 16/11 | 5.863 | 26.9 |
5/4, 8/5 | 6.414 | 29.4 |
9/8, 16/9 | 7.546 | 34.6 |
15/13, 26/15 | 7.741 | 35.5 |
15/11, 22/15 | 8.504 | 39.0 |
7/4, 8/7 | 8.826 | 40.5 |
5/3, 6/5 | 10.187 | 46.7 |
13/8, 16/13 | 10.381 | 47.6 |
15/14, 28/15 | 11.466 | 52.6 |
11/10, 20/11 | 12.277 | 56.3 |
9/5, 10/9 | 13.960 | 64.0 |
13/12, 24/13 | 14.155 | 64.9 |
7/5, 10/7 | 15.239 | 69.8 |
13/11, 22/13 | 16.245 | 74.5 |
13/9, 18/13 | 17.928 | 82.2 |
13/7, 14/13 | 19.207 | 88.0 |
Interval and complement | Error (abs, ¢) | Error (rel, %) |
---|---|---|
1/1, 2/1 | 0.000 | 0.0 |
11/9, 18/11 | 1.683 | 7.7 |
11/6, 12/11 | 2.090 | 9.6 |
13/7, 14/13 | 2.611 | 12.0 |
15/8, 16/15 | 2.640 | 12.1 |
3/2, 4/3 | 3.773 | 17.3 |
13/10, 20/13 | 3.968 | 18.2 |
11/8, 16/11 | 5.863 | 26.9 |
5/4, 8/5 | 6.414 | 29.4 |
7/5, 10/7 | 6.579 | 30.2 |
9/8, 16/9 | 7.546 | 34.6 |
15/13, 26/15 | 7.741 | 35.5 |
15/11, 22/15 | 8.504 | 39.0 |
5/3, 6/5 | 10.187 | 46.7 |
15/14, 28/15 | 10.352 | 47.4 |
13/8, 16/13 | 10.381 | 47.6 |
11/10, 20/11 | 12.277 | 56.3 |
7/4, 8/7 | 12.992 | 59.5 |
9/5, 10/9 | 13.960 | 64.0 |
13/12, 24/13 | 14.155 | 64.9 |
13/11, 22/13 | 16.245 | 74.5 |
7/6, 12/7 | 16.765 | 76.8 |
13/9, 18/13 | 17.928 | 82.2 |
11/7, 14/11 | 18.856 | 86.4 |
9/7, 14/9 | 20.539 | 94.1 |
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-87 55⟩ | [⟨55 87]] | +1.31 | 1.1915 | 7.21 |
2.3.5 | 81/80, 6442450944/6103515625 | [⟨55 87 128]] | −0.13 | 2.10 | 9.63 |
Commas
5-limit commas: 81/80, [47 -15 -10⟩, [31 1 -14⟩, [27 5 -15⟩
7-limit commas: 31104/30625, 6144/6125, 81648/78125, 16128/15625, 28672/28125, 33075/32768, 83349/80000, 1029/1000, 686/675, 10976/10935, 16807/16384, 84035/82944
11-limit commas: 59049/58564, 74088/73205, 46656/46585, 21609/21296, 12005/11979, 19683/19360, 243/242, 3087/3025, 5488/5445, 19683/19250, 1944/1925, 45927/45056, 2835/2816, 35721/34375, 7056/6875, 12544/12375, 7203/7040, 2401/2376, 24057/24010, 72171/70000, 891/875, 176/175, 2079/2048, 385/384, 3234/3125, 17248/16875, 26411/25600, 26411/2592, 26411/262404, 88209/87808, 30976/30625, 3267/3200, 121/120, 81312/78125, 41503/40000, 41503/40500, 35937/35000, 2662/2625, 42592/42525, 83853/81920, 9317/9216, 65219/62500, 43923/43904, 14641/14400, 14641/14580
13-limit commas: 59535/57122, 29400/28561, 29568/28561, 29645/28561, 24576/24167, 99225/96668, 24500/24167, 50421/48334, 45927/43940, 2268/2197, 2240/2197, 57624/54925, 61875/61516, 57024/54925, 11264/10985, 72765/70304, 13475/13182, 22869/21970, 6776/6591, 20736/20449, 20480/20449, 84035/81796, 91125/91091, 65536/65065, 15309/14872, 1890/1859, 5600/5577, 9604/9295, 59049/57967, 58320/57967, 4374/4225, 864/845, 512/507, 11025/10816, 6125/6084, 21952/21125, 16807/16224, 84035/82134, 66825/66248, 90112/88725, 56133/54080, 693/676, 1540/1521, 26411/25350, 58806/57967, 58080/57967, 88209/84500, 4356/4225, 7744/7605, 88935/86528, 33275/33124, 27951/27040, 9317/9126, 58564/57967, 43923/42250, 17496/17303, 87808/86515, 55296/55055, 25515/25168, 1575/1573, 64827/62920, 4802/4719, 98415/98098, 59049/57200, 729/715, 144/143, 18375/18304, 18522/17875, 10976/10725, 84035/82368, 59049/56875, 11664/11375, 2304/2275, 4096/4095, 1701/1664, 105/104, 42336/40625, 25088/24375, 21609/20800, 2401/2340, 9604/9477, 72171/71344, 2673/2600, 66/65, 352/351, 13475/13312, 33957/32500, 15092/14625, 81675/81536, 58806/56875, 11616/11375, 61952/61425, 68607/66560, 847/832, 4235/4212, 35937/35672, 1331/1300, 5324/5265, 58564/56875, 85293/85184, 13377/13310, 85293/84700, 15288/15125, 31213/30976, 67392/67375, 28431/28160, 34944/34375, 4459/4400, 4459/4455, 28431/28000, 351/350, 79872/78125, 66339/65536, 51597/50000, 637/625, 10192/10125, 31213/30720, 31213/31104, 30888/30625, 1287/1280, 81081/78125, 16016/15625, 49049/48000, 49049/48600, 14157/14000, 33033/32768, 77077/75000, 51909/51200, 17303/17280, 75712/75625, 8281/8250, 41067/40960, 31941/31250, 9464/9375, 57967/57600, 91091/90000, 61347/61250, 79092/78125
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 6\55 | 130.9 | 14/13 | Twothirdtonic (55f) |
1 | 16\55 | 349.1 | 11/9 | Mohaha |
1 | 23\55 | 501.8 | 4/3 | Meantone (55d) |
1 | 26\55 | 567.3 | 7/5 | Liese (55) |
1 | 27\55 | 589.1 | 45/32 | Untriton (55d) / aufo (55) |
5 | 17\55 (5\55) |
370.9 (109.1) |
99/80 (16/15) |
Quintosec |
11 | 23\55 (3\55) |
501.8 (65.5) |
4/3 (36/35) |
Hendecatonic (55) |
Instruments
Music
Modern renderings
- "Jesus bleibet meine Freude" from Herz und Mund und Tat und Leben, BWV 147 (1723) – arranged for two organs, rendered by Claudi Meneghin (2021)
- "Contrapunctus 4" from The Art of Fugue, BWV 1080 (1742–1749) – rendered by Claudi Meneghin (2024)
- "Contrapunctus 11" from The Art of Fugue, BWV 1080 (1742–1749) – rendered by Claudi Meneghin (2024)
- Prelude in E Minor "The Great" – rendered by Claudi Meneghin (2023)
- Prelude in E Minor "The Little" – rendered by Claudi Meneghin (2024)
- Maple Leaf Rag (1899) – arranged for harpsichord and rendered by Claudi Meneghin (2024)
- Rondo alla Turca from the Piano Sonata No. 11, KV 331 (1778) – rendered by Francium (2023)
- Fugue in G minor, KV 401 (1782) – rendered by Francium (2023)
- Adagio in B minor, KV 540 (1788) – rendered by Carlo Serafini (2011) (blog entry)
- Allegro from the Piano Sonata No. 16, KV 545 (1788) – rendered by Francium (2023)
- Yuutsu no Yuutsu (2006) – rendered by MortisTheneRd (2024)
21st century
- Double Fugue on "We Wish You a Merry Christmas" for String Quartet (2020)
- Canon at the Diatonic Semitone on an Ancient Lombard Theme (2021)
- Chacony "Lament & Deception" for Two Violins and Cello (2021), for Baroque Wind Ensemble (2023)
- Fantasy "Almost a Fugue" on a Theme by Giuliani, for String Quartet (2021)
External links
- [http://tonalsoft.com/monzo/55edo/55edo.aspx Mozart's tuning: 55-edo
and its close relative, 1/6-comma meantone] (containing another listening example) on Tonalsoft Encyclopedia