|
|
Line 7: |
Line 7: |
|
| |
|
| == Scale tree == | | == Scale tree == |
| {| class="wikitable" | | {{Scale tree|Comments=1/0: [[Rodan]] (for scales approaching this tuning); |
| |-
| | 6/1: ↓ [[Slendric]]; |
| | | 1\5
| | 5/1: [[Mothra]]; |
| | |
| | 9/2: [[Cynder]]; |
| | |
| | 1/1: [[Machine]]|depth=5}} |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 240
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 9\46
| |
| | |
| |
| | | 234.783
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 17\87
| |
| | | 234.483
| |
| | style="text-align:center;" | Rodan is around here
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 8\41
| |
| | |
| |
| | |
| |
| | | 234.146
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 15\77
| |
| | |
| |
| | | 233.766
| |
| | style="text-align:center;" | Slendric is around here
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 7\36
| |
| | |
| |
| | |
| |
| | |
| |
| | | 233.333
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 13\67
| |
| | |
| |
| | |
| |
| | | 232.836
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 6\31
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 232.258
| |
| | style="text-align:center;" | Cynder/mothra is around here
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 11\57
| |
| | |
| |
| | |
| |
| | |
| |
| | | 231.579
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 5\26
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 230.769
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 9\47
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 229.787
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 228.944
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | | 4\21
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 228.571
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 227.75
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 11\58
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 227.586
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 29\153
| |
| | |
| |
| | |
| |
| | | 227.451
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 76\401
| |
| | | 227.431
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 47\248
| |
| | |
| |
| | | 227.419
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 18\95
| |
| | |
| |
| | |
| |
| | |
| |
| | | 227.368
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 7\37
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 227.027
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | | 3\16
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 225
| |
| | style="text-align:center;" | Boundary of propriety
| |
| | |
| (smaller generators are proper)
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 223.692
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 8\43
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 223.256
| |
| | style="text-align:center;" | | |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 21\113
| |
| | |
| |
| | |
| |
| | |
| |
| | | 223.009
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 55\296
| |
| | |
| |
| | | 222.973
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 89\479
| |
| | | 222.9645
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 34\183
| |
| | |
| |
| | |
| |
| | | 222.951
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 13\70
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 222.857
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 222.6765
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | | 5\27
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 222.222
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 7\38
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 221.035
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 9\49
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 220.408
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 11\60
| |
| | |
| |
| | |
| |
| | |
| |
| | | 220
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 13\71
| |
| | |
| |
| | |
| |
| | | 219.718
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 15\82
| |
| | |
| |
| | | 219.512
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 17\93
| |
| | | 219.355
| |
| | |
| |
| |-
| |
| | | 2\11
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 218.182
| |
| | style="text-align:center;" | Machine is around here
| |
| |}
| |
| | |
| [[Category:11-tone scales]] | | [[Category:11-tone scales]] |
5L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 5 large steps and 6 small steps, repeating every octave. 5L 6s is a child scale of 5L 1s, expanding it by 5 tones. Generators that produce this scale range from 218.2 ¢ to 240 ¢, or from 960 ¢ to 981.8 ¢.
This pattern has multiple significant harmonic entropy minima, but they are all improper. The only saving grace for it is that is has harmonic entropy minima where the ratio between the large and small steps is optimal for melody, and that the generator for these scales is less than 6 cents flat of 8/7. The saving grace of the more lopsided scales is that a syntonic fifth is three generators up from the root. The name for this MOS pattern is p-chro machinoid.
Modes
Modes of 5L 6s
UDP |
Cyclic order |
Step pattern
|
10|0 |
1 |
LsLsLsLsLss
|
9|1 |
3 |
LsLsLsLssLs
|
8|2 |
5 |
LsLsLssLsLs
|
7|3 |
7 |
LsLssLsLsLs
|
6|4 |
9 |
LssLsLsLsLs
|
5|5 |
11 |
sLsLsLsLsLs
|
4|6 |
2 |
sLsLsLsLssL
|
3|7 |
4 |
sLsLsLssLsL
|
2|8 |
6 |
sLsLssLsLsL
|
1|9 |
8 |
sLssLsLsLsL
|
0|10 |
10 |
ssLsLsLsLsL
|
Scale tree
Template:Scale tree