383edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Adopt template: EDO intro; cleanup; clarify the title row of the rank-2 temp table; -redundant categories
ArrowHead294 (talk | contribs)
mNo edit summary
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 56: Line 48:
| 0.1525
| 0.1525
| 4.87
| 4.87
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 90: Line 76:
| 4/3
| 4/3
| [[Helmholtz]]
| [[Helmholtz]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


[[Category:Countertertiaschis]]
[[Category:Countertertiaschis]]

Revision as of 02:38, 16 November 2024

← 382edo 383edo 384edo →
Prime factorization 383 (prime)
Step size 3.13316 ¢ 
Fifth 224\383 (701.828 ¢)
Semitones (A1:m2) 36:29 (112.8 ¢ : 90.86 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

383edo is distinctly consistent through the 15-odd-limit with a flat tendency. The equal temperament tempers out 32805/32768 (schisma) in the 5-limit; 2401/2400 in the 7-limit; 3025/3024, 4000/3993 and 6250/6237 in the 11-limit; and 625/624, 1575/1573 and 2080/2079 in the 13-limit. It provides the optimal patent val for the countertertiaschis temperament, and a good tuning for sesquiquartififths in the higher limit.

Prime harmonics

Approximation of prime harmonics in 383edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.13 -0.94 -0.68 +0.12 -0.84 -1.56 +0.14 +1.49 +1.23 -1.43
Relative (%) +0.0 -4.1 -29.8 -21.7 +3.8 -26.8 -49.8 +4.4 +47.6 +39.3 -45.7
Steps
(reduced)
383
(0)
607
(224)
889
(123)
1075
(309)
1325
(176)
1417
(268)
1565
(33)
1627
(95)
1733
(201)
1861
(329)
1897
(365)

Subsets and supersets

383edo is the 76th prime edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-607 383 | [383 607]] | +0.0402 | 0.0402 | 1.28 |- | 2.3.5 | 32805/32768, [-8 -55 41 | [383 607 889]] | +0.1610 | 0.1741 | 5.55 |- | 2.3.5.7 | 2401/2400, 32805/32768, 68359375/68024448 | [383 607 889 1075]] | +0.1813 | 0.1548 | 4.94 |- | 2.3.5.7.11 | 2401/2400, 3025/3024, 4000/3993, 32805/32768 | [383 607 889 1075 1325]] | +0.1382 | 0.1631 | 5.20 |- | 2.3.5.7.11.13 | 625/624, 1575/1573, 2080/2079, 2401/2400, 10985/10976 | [383 607 889 1075 1325 1417]] | +0.1531 | 0.1525 | 4.87 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 53\383 | 166.06 | 11/10 | Countertertiaschis |- | 1 | 56\383 | 175.46 | 448/405 | Sesquiquartififths |- | 1 | 133\383 | 416.71 | 14/11 | Unthirds |- | 1 | 159\383 | 498.17 | 4/3 | Helmholtz Template:Rank-2 end Template:Orf