337edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|337}} == Theory == 337et tempers out 16875/16807, 1280000000/1275989841, 14348907/14336000, 5250987/5242880, 420175/419904 and 201768035/201..."
 
Review
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|337}}
{{EDO intro|337}}
== Theory ==
== Theory ==
337et tempers out [[16875/16807]], 1280000000/1275989841, [[14348907/14336000]], 5250987/5242880, 420175/419904 and 201768035/201326592 in the 7-limit. It provides the optimal patent val for the [[kleirtismic]] temperament.
337edo is [[consistent]] to the [[9-odd-limit]], but the error of [[harmonic]] [[5/1|5]] is quite large. If the harmonic is used at all, it tends very flat. The equal temperament [[tempering out|tempers out]] [[16875/16807]], 420175/419904, and 5250987/5242880 in the 7-limit. It [[support]]s the [[kleirtismic]] temperament.
 
=== Odd harmonics ===
=== Odd harmonics ===
{{Harmonics in equal|337}}
{{Harmonics in equal|337}}
=== Subsets and supersets ===
=== Subsets and supersets ===
337edo is the 68th [[prime EDO]].  
337edo is the 68th [[prime edo]].  
 
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3
| 2.3
|{{monzo|-534 337}}
| {{monzo| -534 337 }}
|{{val|337 534}}
| {{mapping| 337 534 }}
| 0.1487
| 0.1487
| 0.1487
| 0.1487
| 4.18
| 4.18
|-
|-
|2.3.5
| 2.3.5
|15625/15552, {{monzo|-88 57 -1}}
| 15625/15552, {{monzo| -88 57 -1 }}
|{{val|337 534 782}}
| {{mapping| 337 534 782 }}
| 0.3495
| 0.3495
| 0.3089
| 0.3089
| 8.67
| 8.67
|-
|-
|2.3.5.7
| 2.3.5.7
|15625/15552, 16875/16807, 7381125/7340032
| 15625/15552, 16875/16807, 7381125/7340032
|{{val|337 534 782 946}}
| {{mapping| 337 534 782 946 }}
| 0.2870
| 0.2870
| 0.2886
| 0.2886
Line 43: Line 47:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator*
! Cents<br>(reduced)
! Cents*
! Associated<br>ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|67\337
| 67\337
|238.58
| 238.58
|147/128
| 147/128
|[[Tokko]]
| [[Tokko]]
|-
|-
|1
| 1
|89\337
| 89\337
|316.91
| 316.91
|6/5
| 6/5
|[[Hanson]]
| [[Hanson]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 08:10, 16 November 2023

← 336edo 337edo 338edo →
Prime factorization 337 (prime)
Step size 3.56083 ¢ 
Fifth 197\337 (701.484 ¢)
Semitones (A1:m2) 31:26 (110.4 ¢ : 92.58 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

337edo is consistent to the 9-odd-limit, but the error of harmonic 5 is quite large. If the harmonic is used at all, it tends very flat. The equal temperament tempers out 16875/16807, 420175/419904, and 5250987/5242880 in the 7-limit. It supports the kleirtismic temperament.

Odd harmonics

Approximation of odd harmonics in 337edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.47 -1.74 -0.28 -0.94 +0.61 -0.17 +1.35 -1.69 +1.60 -0.75 -1.57
Relative (%) -13.2 -49.0 -7.9 -26.5 +17.2 -4.8 +37.8 -47.5 +44.8 -21.1 -44.0
Steps
(reduced)
534
(197)
782
(108)
946
(272)
1068
(57)
1166
(155)
1247
(236)
1317
(306)
1377
(29)
1432
(84)
1480
(132)
1524
(176)

Subsets and supersets

337edo is the 68th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-534 337 [337 534]] 0.1487 0.1487 4.18
2.3.5 15625/15552, [-88 57 -1 [337 534 782]] 0.3495 0.3089 8.67
2.3.5.7 15625/15552, 16875/16807, 7381125/7340032 [337 534 782 946]] 0.2870 0.2886 8.10

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 67\337 238.58 147/128 Tokko
1 89\337 316.91 6/5 Hanson

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct