961edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|961}} ==Theory== 961et tempers out 32805/32768 in the 5-limit; 14348907/14336000, 4375/4374 and 65625/65536 in the 7-limit; 10192158..." |
Rework theory; comma bases; formatting; clarify the title row of the rank-2 temp table |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|961}} | {{EDO intro|961}} | ||
==Theory== | |||
== Theory == | |||
===Odd harmonics=== | The equal temperament [[Tempering out|tempers out]] [[32805/32768]] in the 5-limit; [[4375/4374]], [[65625/65536]], and [[14348907/14336000]] in the 7-limit. In the 11-limit, the 961e [[val]] {{val| 961 1523 2231 '''2698''' '''3324''' }} scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val {{val| 961 1523 2231 '''2697''' '''3324''' }}, which tempers out [[3025/3024]] and 184877/184320. The [[patent val]] {{val| 961 1523 2231 '''2698''' '''3325''' }} tempers out [[4000/3993]] and 46656/46585. | ||
=== Odd harmonics === | |||
{{Harmonics in equal|961}} | {{Harmonics in equal|961}} | ||
===Subsets and supersets=== | |||
961 factors into 31<sup>2</sup> | === Subsets and supersets === | ||
==Regular temperament properties== | Since 961 factors into 31<sup>2</sup>, 961edo has [[31edo]] as its subset edo. | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|-1523 961}} | | {{monzo|-1523 961}} | ||
|{{ | | {{mapping| 961 1523 }} | ||
| 0.0587 | | 0.0587 | ||
| 0.0587 | | 0.0587 | ||
| 4.70 | | 4.70 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|32805/32768, {{monzo|-22 -137 103}} | | 32805/32768, {{monzo| -22 -137 103 }} | ||
|{{ | | {{mapping| 961 1523 2231 }} | ||
| 0.1060 | | 0.1060 | ||
| 0.0823 | | 0.0823 | ||
| 6.59 | | 6.59 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|4375/4374, 32805/32768, | | 4375/4374, 32805/32768, {{monzo| 15 9 14 -22 }} | ||
|{{ | | {{mapping| 961 1523 2231 2698 }} | ||
| 0.0648 | | 0.0648 | ||
| 0.1008 | | 0.1008 | ||
| 8.01 | | 8.01 | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|399\961 | | 399\961 | ||
|498.231 | | 498.231 | ||
|4/3 | | 4/3 | ||
| | | [[Pontiac]] | ||
|} | |} | ||
==Scales== | <nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | ||
== Scales == | |||
* [[Haumea5]] | * [[Haumea5]] | ||
* [[Haumea9]] | * [[Haumea9]] | ||
* [[Haumea14]] | * [[Haumea14]] | ||
* [[Haumea19]] | * [[Haumea19]] |
Revision as of 08:25, 20 October 2023
← 960edo | 961edo | 962edo → |
Theory
The equal temperament tempers out 32805/32768 in the 5-limit; 4375/4374, 65625/65536, and 14348907/14336000 in the 7-limit. In the 11-limit, the 961e val ⟨961 1523 2231 2698 3324] scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val ⟨961 1523 2231 2697 3324], which tempers out 3025/3024 and 184877/184320. The patent val ⟨961 1523 2231 2698 3325] tempers out 4000/3993 and 46656/46585.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.186 | -0.466 | +0.165 | -0.372 | +0.607 | -0.153 | +0.597 | -0.065 | -0.323 | -0.021 | -0.179 |
Relative (%) | -14.9 | -37.3 | +13.2 | -29.8 | +48.6 | -12.3 | +47.8 | -5.2 | -25.8 | -1.7 | -14.3 | |
Steps (reduced) |
1523 (562) |
2231 (309) |
2698 (776) |
3046 (163) |
3325 (442) |
3556 (673) |
3755 (872) |
3928 (84) |
4082 (238) |
4221 (377) |
4347 (503) |
Subsets and supersets
Since 961 factors into 312, 961edo has 31edo as its subset edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-1523 961⟩ | [⟨961 1523]] | 0.0587 | 0.0587 | 4.70 |
2.3.5 | 32805/32768, [-22 -137 103⟩ | [⟨961 1523 2231]] | 0.1060 | 0.0823 | 6.59 |
2.3.5.7 | 4375/4374, 32805/32768, [15 9 14 -22⟩ | [⟨961 1523 2231 2698]] | 0.0648 | 0.1008 | 8.01 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 399\961 | 498.231 | 4/3 | Pontiac |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct