1012edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Eliora (talk | contribs)
Line 2: Line 2:
{{EDO intro|1012}}
{{EDO intro|1012}}
== Theory ==
== Theory ==
1012edo is a strong 13-limit system, distinctly [[consistent]] through the 15-odd-limit. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. A basis for the 13-limit commas is [[2401/2400]], [[4096/4095]], [[6656/6655]], [[9801/9800]] and {{monzo| 2 6 -1 2 0 4 }}. It provides the [[optimal patent val]] for [[quarvish]] temperament in the 7-limit and also in the 11-limit.  
1012edo is a strong 13-limit system, distinctly [[consistent]] through the 15-odd-limit. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. A basis for the 13-limit commas is [[2401/2400]], [[4096/4095]], [[6656/6655]], [[9801/9800]] and {{monzo| 2 6 -1 2 0 4 }}
 
In the 5-limit, it is enfactored, with the same mapping as [[506edo]], providing a tuning for [[vishnu]], [[monzismic]], and [[lafa]]. In the 7-limit, it tempers out the [[breedsma]], 2401/2400. Furthermore, it is a [[septiruthenia]]<nowiki/>n system, tempering 64/63 comma to 23 steps, 1/44th of the octave.It provides the [[optimal patent val]] for [[quarvish]] temperament in the 7-limit and also in the 11-limit
 
=== Other techniques ===
In addition to containing 22edo and 23edo, it contains a [[22L 1s]] scale produced by generator of 45\1012 associated with [[33/32]], and is associated with the 45 & 1012 temperament, making it [[concoctic]]. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, {{monzo| 18 15 -12 -1  0 -3 }}.
 
In the 2.3.7.11.101, it tempers out [[7777/7776]] and is a tuning for the [[neutron star]] temperament.


=== Prime harmonics ===
=== Prime harmonics ===
Line 11: Line 18:


[[2024edo]], which divides the edostep in two, provides a good correction for the 17th harmonic.  
[[2024edo]], which divides the edostep in two, provides a good correction for the 17th harmonic.  
=== Trivia ===
In addition to containing 22edo and 23edo, it contains a [[22L 1s]] scale produced by generator of 45\1012 associated with [[33/32]], and is associated with the 45 & 1012 temperament, making it [[concoctic]]. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, {{monzo| 18 15 -12 -1  0 -3 }}.
In the 2.3.7.11.101, it tempers out [[7777/7776]] and is a tuning for the [[neutron star]] temperament.


== Regular temperament properties ==
== Regular temperament properties ==

Revision as of 14:22, 7 June 2023

← 1011edo 1012edo 1013edo →
Prime factorization 22 × 11 × 23
Step size 1.18577 ¢ 
Fifth 592\1012 (701.976 ¢) (→ 148\253)
Semitones (A1:m2) 96:76 (113.8 ¢ : 90.12 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

1012edo is a strong 13-limit system, distinctly consistent through the 15-odd-limit. It is a zeta peak edo, though not zeta integral nor zeta gap. A basis for the 13-limit commas is 2401/2400, 4096/4095, 6656/6655, 9801/9800 and [2 6 -1 2 0 4.

In the 5-limit, it is enfactored, with the same mapping as 506edo, providing a tuning for vishnu, monzismic, and lafa. In the 7-limit, it tempers out the breedsma, 2401/2400. Furthermore, it is a septiruthenian system, tempering 64/63 comma to 23 steps, 1/44th of the octave.It provides the optimal patent val for quarvish temperament in the 7-limit and also in the 11-limit.

Other techniques

In addition to containing 22edo and 23edo, it contains a 22L 1s scale produced by generator of 45\1012 associated with 33/32, and is associated with the 45 & 1012 temperament, making it concoctic. A comma basis for the 13-limit is 2401/2400, 6656/6655, 123201/123200, [18 15 -12 -1 0 -3.

In the 2.3.7.11.101, it tempers out 7777/7776 and is a tuning for the neutron star temperament.

Prime harmonics

Approximation of prime harmonics in 1012edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.021 +0.248 -0.051 +0.065 +0.184 +0.578 +0.115 +0.184 -0.328 +0.419
Relative (%) +0.0 +1.8 +20.9 -4.3 +5.5 +15.5 +48.8 +9.7 +15.5 -27.7 +35.3
Steps
(reduced)
1012
(0)
1604
(592)
2350
(326)
2841
(817)
3501
(465)
3745
(709)
4137
(89)
4299
(251)
4578
(530)
4916
(868)
5014
(966)

Subsets and supersets

1012 has subset edos 2, 4, 11, 22, 23, 44, 46, 92, 253, 506.

2024edo, which divides the edostep in two, provides a good correction for the 17th harmonic.

Regular temperament properties

Rank-2 temperaments

Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 361\1012 428.066 2800/2187 Osiris
2 491\1012 498.023 7/5 Quarvish
44 420\1012
(6\1012)
498.023
(7.115)
4/3
(18375/18304)
Ruthenium