|
|
Line 9: |
Line 9: |
| {{Harmonics in equal|108}} | | {{Harmonics in equal|108}} |
|
| |
|
| === Miscellany ===
| | [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> |
| Aside from tuning, 108 is the smallest number with a prime factorization of the form <math>p^p \cdot q^q</math>. Being close to 100, it is a good substitute for a relative cent if you desire the measure to have such a property. Also, multiplying it by 12 gives the fourth power of an integer.
| |
| | |
| Since 108edo has a step of 11.111 cents, it also allows one to use its MOS scales as circulating temperaments.
| |
| {| class="wikitable"
| |
| |+Circulating temperaments in 108edo
| |
| !Tones
| |
| !Pattern
| |
| !L:s
| |
| |-
| |
| |5
| |
| |[[3L 2s]]
| |
| |22:21
| |
| |-
| |
| |6
| |
| |[[6edo]]
| |
| |equal
| |
| |-
| |
| |7
| |
| |[[3L 4s]]
| |
| |16:15
| |
| |-
| |
| |8
| |
| |[[4L 4s]]
| |
| |14:13
| |
| |-
| |
| |9
| |
| |[[9edo]]
| |
| |equal
| |
| |-
| |
| |10
| |
| |[[8L 2s]]
| |
| |11:10
| |
| |-
| |
| |11
| |
| |[[9L 2s]]
| |
| |10:9
| |
| |-
| |
| |12
| |
| |[[12edo]]
| |
| |equal
| |
| |-
| |
| |13
| |
| |[[3L 10s]]
| |
| |9:8
| |
| |-
| |
| |14
| |
| |[[10L 4s]]
| |
| | rowspan="2" |8:7
| |
| |-
| |
| |15
| |
| |[[3L 12s]]
| |
| |-
| |
| |16
| |
| |12L 4s
| |
| | rowspan="2" |7:6
| |
| |-
| |
| |17
| |
| |[[6L 11s]]
| |
| |-
| |
| |18
| |
| |[[18edo]]
| |
| |equal
| |
| |-
| |
| |19
| |
| |[[13L 6s]]
| |
| | rowspan="3" |6:5
| |
| |-
| |
| |20
| |
| |8L 12s
| |
| |-
| |
| |21
| |
| |3L 18s
| |
| |-
| |
| |22
| |
| |20L 2s
| |
| | rowspan="5" |5:4
| |
| |-
| |
| |23
| |
| |16L 7s
| |
| |-
| |
| |24
| |
| |12L 12s
| |
| |-
| |
| |25
| |
| |8L 17s
| |
| |-
| |
| |26
| |
| |4L 22s
| |
| |-
| |
| |27
| |
| |[[27edo]]
| |
| |equal
| |
| |-
| |
| |28
| |
| |24L 4s
| |
| | rowspan="8" |4:3
| |
| |-
| |
| |29
| |
| |21L 8s
| |
| |-
| |
| |30
| |
| |18L 12s
| |
| |-
| |
| |31
| |
| |15L 16s
| |
| |-
| |
| |32
| |
| |12L 20s
| |
| |-
| |
| |33
| |
| |9L 24s
| |
| |-
| |
| |34
| |
| |6L 28s
| |
| |-
| |
| |35
| |
| |3L 32s
| |
| |-
| |
| |36
| |
| |[[36edo]]
| |
| |equal
| |
| |-
| |
| |37
| |
| |34L 3s
| |
| | rowspan="17" |3:2
| |
| |-
| |
| |38
| |
| |32L 6s
| |
| |-
| |
| |39
| |
| |30L 9s
| |
| |-
| |
| |40
| |
| |28L 12s
| |
| |-
| |
| |41
| |
| |26L 15s
| |
| |-
| |
| |42
| |
| |24L 18s
| |
| |-
| |
| |43
| |
| |22L 21s
| |
| |-
| |
| |44
| |
| |20L 24s
| |
| |-
| |
| |45
| |
| |18L 27s
| |
| |-
| |
| |46
| |
| |16L 30s
| |
| |-
| |
| |47
| |
| |14L 33s
| |
| |-
| |
| |48
| |
| |12L 36s
| |
| |-
| |
| |49
| |
| |10L 39s
| |
| |-
| |
| |50
| |
| |8L 42s
| |
| |-
| |
| |51
| |
| |6L 45s
| |
| |-
| |
| |52
| |
| |4L 48s
| |
| |-
| |
| |53
| |
| |2L 51s
| |
| |-
| |
| |54
| |
| |[[54edo]]
| |
| |equal
| |
| |-
| |
| |55
| |
| |53L 2s
| |
| | rowspan="32" |2:1
| |
| |-
| |
| |56
| |
| |52L 4s
| |
| |-
| |
| |57
| |
| |51L 6s
| |
| |-
| |
| |58
| |
| |50L 8s
| |
| |-
| |
| |59
| |
| |49L 10s
| |
| |-
| |
| |60
| |
| |48L 12s
| |
| |-
| |
| |61
| |
| |47L 14s
| |
| |-
| |
| |62
| |
| |46L 16s
| |
| |-
| |
| |63
| |
| |45L 18s
| |
| |-
| |
| |64
| |
| |44L 20s
| |
| |-
| |
| |65
| |
| |43L 22s
| |
| |-
| |
| |66
| |
| |42L 24s
| |
| |-
| |
| |67
| |
| |41L 26s
| |
| |-
| |
| |68
| |
| |40L 28s
| |
| |-
| |
| |69
| |
| |39L 30s
| |
| |-
| |
| |70
| |
| |38L 32s
| |
| |-
| |
| |71
| |
| |37L 34s
| |
| |-
| |
| |72
| |
| |36L 36s
| |
| |-
| |
| |73
| |
| |35L 38s
| |
| |-
| |
| |74
| |
| |34L 40s
| |
| |-
| |
| |75
| |
| |33L 42s
| |
| |-
| |
| |76
| |
| |32L 44s
| |
| |-
| |
| |77
| |
| |31L 46s
| |
| |-
| |
| |78
| |
| |30L 48s
| |
| |-
| |
| |79
| |
| |29L 50s
| |
| |-
| |
| |80
| |
| |28L 52s
| |
| |-
| |
| |81
| |
| |27L 54s
| |
| |-
| |
| |82
| |
| |26L 56s
| |
| |-
| |
| |83
| |
| |25L 58s
| |
| |-
| |
| |84
| |
| |24L 60s
| |
| |-
| |
| |85
| |
| |23L 62s
| |
| |-
| |
| |86
| |
| |22L 64s
| |
| |}
| |
| | |
| [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | |
| [[Category:Valentine]] | | [[Category:Valentine]] |
Revision as of 21:14, 30 May 2023
Prime factorization
|
22 × 33
|
Step size
|
11.1111 ¢
|
Fifth
|
63\108 (700 ¢) (→ 7\12)
|
Semitones (A1:m2)
|
9:9 (100 ¢ : 100 ¢)
|
Consistency limit
|
7
|
Distinct consistency limit
|
7
|
Template:EDO intro
Theory
108edo tempers out the Pythagorean comma, 531441/524288, in the 3-limit and 1990656/1953125, the valensixthtone comma, in the 5-limit. In the 7-limit it tempers out 126/125 and 1029/1024, supporting valentine temperament, and making for a good tuning for it and for starling temperament, the planar temperament tempering out 126/125. In the 11-limit the patent val tempers out 540/539 and the 108e val tempers out 121/120 and 176/175, supporting 11-limit valentine for which it is again a good tuning.
108edo is the smallest 12n-edo which offers a decent alternative fifth to 12edo's fifth, that is 27edo's superpyth fifth.
Prime harmonics
Approximation of prime harmonics in 108edo
Harmonic
|
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
23
|
29
|
31
|
Error
|
Absolute (¢)
|
+0.00
|
-1.96
|
+2.58
|
-2.16
|
+4.24
|
+3.92
|
-4.96
|
+2.49
|
+5.06
|
+3.76
|
-0.59
|
Relative (%)
|
+0.0
|
-17.6
|
+23.2
|
-19.4
|
+38.1
|
+35.3
|
-44.6
|
+22.4
|
+45.5
|
+33.8
|
-5.3
|
Steps (reduced)
|
108 (0)
|
171 (63)
|
251 (35)
|
303 (87)
|
374 (50)
|
400 (76)
|
441 (9)
|
459 (27)
|
489 (57)
|
525 (93)
|
535 (103)
|