62edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
rank-2 temperaments
m Restore comment of the category; cleanup
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|62}}
{{EDO intro|62}}
== Theory ==
== Theory ==
62 = 2 × 31 and the [[patent val]] is a contorted [[31edo]] through the 11-limit; in the 13-limit it tempers out [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]. It provides the [[optimal patent val]] for [[31 comma temperaments #Gallium|gallium]], [[Starling temperaments #Valentine|semivalentine]] and [[Meantone_family#Hemimeantone|hemimeantone]] temperaments.  
62 = 2 × 31 and the [[patent val]] is a contorted [[31edo]] through the 11-limit; in the 13-limit it tempers out [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]. It provides the [[optimal patent val]] for [[31 comma temperaments #Gallium|gallium]], [[Starling temperaments #Valentine|semivalentine]] and [[Meantone_family#Hemimeantone|hemimeantone]] temperaments.  
Line 12: Line 13:


The 15 & 62 temperament, corresponding to the leap day cycle, is just contorted [[valentine]], order 2.
The 15 & 62 temperament, corresponding to the leap day cycle, is just contorted [[valentine]], order 2.
=== Odd harmonics ===
=== Odd harmonics ===
{{harmonics in equal|62}}
{{harmonics in equal|62}}
== Intervals ==
== Intervals ==


Line 345: Line 348:
|  
|  
|}
|}
[[Category:Equal divisions of the octave|##]]


== Regular temperament properties ==
== Regular temperament properties ==
Line 353: Line 354:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
!Periods
! Periods<br>per 8ve
per octave
! Generator<br>(Reduced)
!Generator
! Cents<br>(Reduced)
(reduced)
! Associated<br>Ratio
!Cents
! Temperaments
(reduced)
!Associated
ratio
!Temperaments
|-
|-
|1
| 1
|13\62
| 13\62
|251.61
| 251.61
|15/13
| 15/13
|[[Hemimeantone]]
| [[Hemimeantone]]
|-
|-
|1
| 1
|17\62
| 17\62
|329.03
| 329.03
|16/11
| 16/11
|[[Mabon]]
| [[Mabon]]
|-
|-
|2
| 2
|4\62
| 4\62
|77.42
| 77.42
|21/20
| 21/20
|[[Semivalentine]]
| [[Semivalentine]]
|-
|-
|31
| 31
|1\62
| 1\62
|19.35
| 19.35
|196/195
| 196/195
|[[Kumhar]]
| [[Kumhar]]
|-
|-
|31
| 31
|1\62
| 1\62
|19.35
| 19.35
|16807/16640
| 16807/16640
|[[Gallium]]
| [[Gallium]]
|}
|}
[[Category:Equal divisions of the octave|##]] <!-- 2-digit number -->

Revision as of 18:35, 15 December 2022

← 61edo 62edo 63edo →
Prime factorization 2 × 31
Step size 19.3548 ¢ 
Fifth 36\62 (696.774 ¢) (→ 18\31)
Semitones (A1:m2) 4:6 (77.42 ¢ : 116.1 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

62 = 2 × 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for gallium, semivalentine and hemimeantone temperaments.

Using the 35\62 generator, which leads to the 62 97 143 173] val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively 62 97 143 172] supports hornbostel.

Relation to a calendar reform

62 years is the amount of years in a leap week calendar cycle which corresponds to a year of 365 days 5 hours 48 minutes 23 seconds, meaning it is both a simple cycle for a calendar, and 62 being a multiple of 31 makes it a harmonically useful and playable cycle. The corresponding maximal evenness scales are 15 & 62 and 11 & 62.

11 & 62 is best interpreted in the 2.9.7 subgroup, where it tempers out 44957696/43046721, and the three generators of 17\62 correspond to 16/9. It's possible to extend this to the 11-limit with comma basis {896/891, 1331/1296}, where 17\62 is mapped to 11/9 and two of them make a 16/11. In addition, three generators make the patent val 9/8, which is also created by combining the flat patent val fifth from 31edo with the sharp 37\62 fifth.

The 15 & 62 temperament, corresponding to the leap day cycle, is just contorted valentine, order 2.

Odd harmonics

Approximation of odd harmonics in 62edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -5.18 +0.78 -1.08 +8.99 -9.38 -8.27 -4.40 -8.18 -7.19 -6.26 -8.92
Relative (%) -26.8 +4.0 -5.6 +46.5 -48.5 -42.7 -22.7 -42.3 -37.2 -32.4 -46.1
Steps
(reduced)
98
(36)
144
(20)
174
(50)
197
(11)
214
(28)
229
(43)
242
(56)
253
(5)
263
(15)
272
(24)
280
(32)

Intervals

Armodue Nomenclature 8;3 Relation
  • Ɨ = Thick (1/8-tone up)
  • = Semisharp (1/4-tone up)
  • b = Flat (5/8-tone down)
  • = Node (sharp/flat blindspot 1/2-tone)
  • # = Sharp (5/8-tone up)
  • v = Semiflat (1/4-tone down)
  • = Thin (1/8-tone down)
# Cents Armodue notation Approximate intervals
0 0.000 1
1 19.355 90/89
2 38.710 1‡ (9#) 45/44
3 58.065 2b 30/29
4 77.419 1◊2 23/22
5 96.774 1# 37/35, 18/17, 19/18
6 116.129 2v 31/29, 15/14, 16/15
7 135.484 2⌐ 27/25, 13/12, 14/13
8 154.839 2 12/11
9 174.194 11/10
10 193.548 2‡ 19/17, 9/8, 10/9
11 212.903 3b 17/15, 9/8
12 232.258 2◊3 8/7
13 251.613 2# 15/13
14 270.968 3v 7/6
15 290.323 3⌐
16 309.677 3 6/5
17 329.032
18 348.387 3‡ 11/9
19 367.742 4b ·
20 387.097 3◊4 5/4
21 406.452 3#
22 425.806 4v (5b)
23 445.161 4⌐
24 464.516 4
25 483.871 4Ɨ (5v)
26 503.226 5⌐ (4‡) 4/3
27 522.581 5 ·
28 541.935
29 561.290 5‡ (4#)
30 580.645 6b 7/5
31 600.000 5◊6
32 619.355 5# 10/7
33 638.710 6v
34 658.065 6⌐
35 677.419 6 ·
36 696.774 3/2
37 716.129 6‡
38 735.484 7b
39 754.839 6◊7
40 774.194 6#
41 793.548 7v
42 812.903 7⌐ 8/5
43 832.258 7 ·
44 851.613 18/11
45 870.968 7‡
46 890.323 8b 5/3
47 909.677 7◊8
48 929.032 7# 12/7
49 948.387 8v 26/15
50 967.742 8⌐ 7/4
51 987.097 8 16/9
52 1006.452
53 1025.806 8‡
54 1045.161 9b
55 1064.516 8◊9
56 1083.871 8#
57 1103.226 9v (1b)
58 1122.581 9⌐
59 1141.936 9
60 1161.290 9Ɨ (1v)
61 1180.645 1⌐ (9‡)
62 1200.000 1

Regular temperament properties

62edo is contorted 31edo through the 11-limit.

Rank-2 temperaments

Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 13\62 251.61 15/13 Hemimeantone
1 17\62 329.03 16/11 Mabon
2 4\62 77.42 21/20 Semivalentine
31 1\62 19.35 196/195 Kumhar
31 1\62 19.35 16807/16640 Gallium