282edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+rank-2 temperaments
m Cleanup and update
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 2 × 3 × 47
{{ED intro}}
| Step size = 4.25532¢
| Fifth = 165\282 (702.12¢) (→ [[94edo|55\94]])
| Semitones = 27:21 (114.89¢ : 89.36¢)
| Consistency = 29
}}
The '''282 equal divisions of the octave''' ('''282edo'''), or the '''282(-tone) equal temperament''' ('''282tet''', '''282et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 282 parts of 4.2553 [[cent]]s each.


== Theory ==
== Theory ==
282edo is the smallest equal temperament uniquely [[consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] (282 = 3 × 94), as well as [[11/10]] and [[20/17]] (supporting the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29. It tempers out 16875/16807, [[19683/19600]] and 65625/65536 in the 7-limit, and [[540/539]] and 5632/5625 in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out 729/728, 1575/1573, 1716/1715 and 2080/2079.
282edo is the smallest edo [[consistency|distinctly consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] ({{nowrap| 282 {{=}} 3 × 94 }}), as well as [[11/10]] and [[20/17]] ([[support]]ing the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29.  
 
The equal temperament [[tempering out|tempers out]] [[6144/6125]] (porwell comma), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]].
 
It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|edo=282|columns=10}}
{{Harmonics in equal|282|columns=11}}
 
=== Subsets and supersets ===
Since 282 factors into primes as {{nowrap| 2 × 3 × 47 }}, 282edo has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
Line 26: Line 28:
|-
|-
| 2.3.5
| 2.3.5
| {{monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }}
| {{Monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }}
| [{{val| 282 447 655 }}]
| {{Mapping| 282 447 655 }}
| -0.1684
| −0.1684
| 0.1671
| 0.1671
| 3.93
| 3.93
Line 34: Line 36:
| 2.3.5.7
| 2.3.5.7
| 6144/6125, 118098/117649, 250047/250000
| 6144/6125, 118098/117649, 250047/250000
| [{{val| 282 447 655 792 }}]
| {{Mapping| 282 447 655 792 }}
| -0.2498
| −0.2498
| 0.2020
| 0.2020
| 4.75
| 4.75
Line 41: Line 43:
| 2.3.5.7.11
| 2.3.5.7.11
| 540/539, 4000/3993, 5632/5625, 137781/137500
| 540/539, 4000/3993, 5632/5625, 137781/137500
| [{{val| 282 447 655 792 976 }}]
| {{Mapping| 282 447 655 792 976 }}
| -0.3081
| −0.3081
| 0.2151
| 0.2151
| 5.06
| 5.06
Line 48: Line 50:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575
| [{{val| 282 447 655 792 976 1044 }}]
| {{Mapping| 282 447 655 792 976 1044 }}
| -0.3480
| −0.3480
| 0.2156
| 0.2156
| 5.07
| 5.07
Line 55: Line 57:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197
| [{{val| 282 447 655 792 976 1044 1153 }}]
| {{Mapping| 282 447 655 792 976 1044 1153 }}
| -0.3481
| −0.3481
| 0.1996
| 0.1996
| 4.69
| 4.69
Line 62: Line 64:
| 2.3.5.7.11.13.17.19
| 2.3.5.7.11.13.17.19
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573
| [{{val| 282 447 655 792 976 1044 1153 1198 }}]
| {{Mapping| 282 447 655 792 976 1044 1153 1198 }}
| -0.3152
| −0.3152
| 0.2061
| 0.2061
| 4.84
| 4.84
Line 69: Line 71:
| 2.3.5.7.11.13.17.19.23
| 2.3.5.7.11.13.17.19.23
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287
| [{{val| 282 447 655 792 976 1044 1153 1198 1276 }}]
| {{Mapping| 282 447 655 792 976 1044 1153 1198 1276 }}
| -0.3173
| −0.3173
| 0.1944
| 0.1944
| 4.57
| 4.57
|}
|}
* 282et has a lower relative error than any previous equal temperaments in the 23-limit, past [[270edo|270]] and before [[311edo|311]].


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br>per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 94: Line 98:
| 565.96
| 565.96
| 4096/2835
| 4096/2835
| [[Tricot]] / [[trident]] (282ef)
| [[Alphatrident]] (7-limit)
|-
|-
| 2
| 2
Line 118: Line 122:
| 157.45
| 157.45
| 35/32
| 35/32
| [[Nessafof]]
| [[Nessafof]] (7-limit)
|-
|-
| 6
| 6
| 51\282<br>(4\282)
| 51\282<br>(4\282)
| 217.02<br>(17.02)
| 217.02<br>(17.02)
| 567/500<br>(245/243)
| 17/15<br>(105/104)
| [[Stearnscape]]
| [[Stearnscape]]
|-
| 6
| 80\282<br>(14\282)
| 340.43<br>(59.57)
| 162/133<br>(88/85)
| [[Semiseptichrome]]
|-
|-
| 6
| 6
Line 132: Line 142:
| [[Sextile]]
| [[Sextile]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct


 
[[Category:Jupiter]]
[[Category:Equal divisions of the octave]]
[[Category:Septisuperfourth]]
[[Category:29-limit]]

Latest revision as of 15:31, 16 March 2025

← 281edo 282edo 283edo →
Prime factorization 2 × 3 × 47
Step size 4.25532 ¢ 
Fifth 165\282 (702.128 ¢) (→ 55\94)
Semitones (A1:m2) 27:21 (114.9 ¢ : 89.36 ¢)
Consistency limit 29
Distinct consistency limit 23

282 equal divisions of the octave (abbreviated 282edo or 282ed2), also called 282-tone equal temperament (282tet) or 282 equal temperament (282et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 282 equal parts of about 4.26 ¢ each. Each step represents a frequency ratio of 21/282, or the 282nd root of 2.

Theory

282edo is the smallest edo distinctly consistent through to the 23-odd-limit, and also the smallest consistent to the 29-odd-limit. It shares the same 3rd, 7th, and 13th harmonics with 94edo (282 = 3 × 94), as well as 11/10 and 20/17 (supporting the garistearn temperament). It has a distinct sharp tendency for odd harmonics up to 29.

The equal temperament tempers out 6144/6125 (porwell comma), 118098/117649 (stearnsma), and 250047/250000 (landscape comma) in the 7-limit, and 540/539 and 5632/5625 in the 11-limit, so that it provides the optimal patent val for the jupiter temperament; it also tempers out 4000/3993 and 234375/234256, providing the optimal patent val for septisuperfourth temperament. In the 13-limit, it tempers out 729/728, 1575/1573, 1716/1715, 2080/2079, and 10648/10647.

It allows essentially tempered chords including swetismic chords, squbemic chords, and petrmic chords in the 13-odd-limit, in addition to nicolic chords in the 15-odd-limit.

Prime harmonics

Approximation of prime harmonics in 282edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.17 +0.92 +1.39 +1.87 +2.03 +1.43 +0.36 +1.51 +0.21 -0.35
Relative (%) +0.0 +4.1 +21.6 +32.6 +44.0 +47.6 +33.5 +8.4 +35.6 +4.9 -8.3
Steps
(reduced)
282
(0)
447
(165)
655
(91)
792
(228)
976
(130)
1044
(198)
1153
(25)
1198
(70)
1276
(148)
1370
(242)
1397
(269)

Subsets and supersets

Since 282 factors into primes as 2 × 3 × 47, 282edo has subset edos 2, 3, 47, 94, and 141.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 [32 -7 -9, [-7 22 -12 [282 447 655]] −0.1684 0.1671 3.93
2.3.5.7 6144/6125, 118098/117649, 250047/250000 [282 447 655 792]] −0.2498 0.2020 4.75
2.3.5.7.11 540/539, 4000/3993, 5632/5625, 137781/137500 [282 447 655 792 976]] −0.3081 0.2151 5.06
2.3.5.7.11.13 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575 [282 447 655 792 976 1044]] −0.3480 0.2156 5.07
2.3.5.7.11.13.17 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197 [282 447 655 792 976 1044 1153]] −0.3481 0.1996 4.69
2.3.5.7.11.13.17.19 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573 [282 447 655 792 976 1044 1153 1198]] −0.3152 0.2061 4.84
2.3.5.7.11.13.17.19.23 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287 [282 447 655 792 976 1044 1153 1198 1276]] −0.3173 0.1944 4.57
  • 282et has a lower relative error than any previous equal temperaments in the 23-limit, past 270 and before 311.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 13\282 55.32 33/32 Escapade
1 133\282 565.96 4096/2835 Alphatrident (7-limit)
2 13\282 55.32 33/32 Septisuperfourth
2 43\282 182.98 10/9 Unidecmic
3 33\282 140.43 243/224 Septichrome
3 37\282 157.45 35/32 Nessafof (7-limit)
6 51\282
(4\282)
217.02
(17.02)
17/15
(105/104)
Stearnscape
6 80\282
(14\282)
340.43
(59.57)
162/133
(88/85)
Semiseptichrome
6 117\282
(23\282)
497.87
(97.87)
4/3
(128/121)
Sextile

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct