282edo: Difference between revisions
+rank-2 temperaments |
m Cleanup and update |
||
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
282edo is the smallest | 282edo is the smallest edo [[consistency|distinctly consistent]] through to the [[23-odd-limit]], and also the smallest consistent to the [[29-odd-limit]]. It shares the same 3rd, 7th, and 13th harmonics with [[94edo]] ({{nowrap| 282 {{=}} 3 × 94 }}), as well as [[11/10]] and [[20/17]] ([[support]]ing the [[Stearnsmic clan #Garistearn|garistearn]] temperament). It has a distinct sharp tendency for odd harmonics up to 29. | ||
The equal temperament [[tempering out|tempers out]] [[6144/6125]] (porwell comma), 118098/117649 (stearnsma), and [[250047/250000]] (landscape comma) in the 7-limit, and [[540/539]] and [[5632/5625]] in the 11-limit, so that it provides the [[optimal patent val]] for the [[jupiter]] temperament; it also tempers out [[4000/3993]] and 234375/234256, providing the optimal patent val for [[septisuperfourth]] temperament. In the 13-limit, it tempers out [[729/728]], [[1575/1573]], [[1716/1715]], [[2080/2079]], and [[10648/10647]]. | |||
It allows [[essentially tempered chord]]s including [[swetismic chords]], [[squbemic chords]], and [[petrmic chords]] in the 13-odd-limit, in addition to [[nicolic chords]] in the 15-odd-limit. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{ | {{Harmonics in equal|282|columns=11}} | ||
=== Subsets and supersets === | |||
Since 282 factors into primes as {{nowrap| 2 × 3 × 47 }}, 282edo has subset edos {{EDOs| 2, 3, 47, 94, and 141 }}. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
Line 26: | Line 28: | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{ | | {{Monzo| 32 -7 -9 }}, {{monzo| -7 22 -12 }} | ||
| | | {{Mapping| 282 447 655 }} | ||
| | | −0.1684 | ||
| 0.1671 | | 0.1671 | ||
| 3.93 | | 3.93 | ||
Line 34: | Line 36: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 6144/6125, 118098/117649, 250047/250000 | | 6144/6125, 118098/117649, 250047/250000 | ||
| | | {{Mapping| 282 447 655 792 }} | ||
| | | −0.2498 | ||
| 0.2020 | | 0.2020 | ||
| 4.75 | | 4.75 | ||
Line 41: | Line 43: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 540/539, 4000/3993, 5632/5625, 137781/137500 | | 540/539, 4000/3993, 5632/5625, 137781/137500 | ||
| | | {{Mapping| 282 447 655 792 976 }} | ||
| | | −0.3081 | ||
| 0.2151 | | 0.2151 | ||
| 5.06 | | 5.06 | ||
Line 48: | Line 50: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575 | | 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575 | ||
| | | {{Mapping| 282 447 655 792 976 1044 }} | ||
| | | −0.3480 | ||
| 0.2156 | | 0.2156 | ||
| 5.07 | | 5.07 | ||
Line 55: | Line 57: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197 | | 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197 | ||
| | | {{Mapping| 282 447 655 792 976 1044 1153 }} | ||
| | | −0.3481 | ||
| 0.1996 | | 0.1996 | ||
| 4.69 | | 4.69 | ||
Line 62: | Line 64: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573 | | 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573 | ||
| | | {{Mapping| 282 447 655 792 976 1044 1153 1198 }} | ||
| | | −0.3152 | ||
| 0.2061 | | 0.2061 | ||
| 4.84 | | 4.84 | ||
Line 69: | Line 71: | ||
| 2.3.5.7.11.13.17.19.23 | | 2.3.5.7.11.13.17.19.23 | ||
| 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287 | | 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287 | ||
| | | {{Mapping| 282 447 655 792 976 1044 1153 1198 1276 }} | ||
| | | −0.3173 | ||
| 0.1944 | | 0.1944 | ||
| 4.57 | | 4.57 | ||
|} | |} | ||
* 282et has a lower relative error than any previous equal temperaments in the 23-limit, past [[270edo|270]] and before [[311edo|311]]. | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br>per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br>ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 94: | Line 98: | ||
| 565.96 | | 565.96 | ||
| 4096/2835 | | 4096/2835 | ||
| [[ | | [[Alphatrident]] (7-limit) | ||
|- | |- | ||
| 2 | | 2 | ||
Line 118: | Line 122: | ||
| 157.45 | | 157.45 | ||
| 35/32 | | 35/32 | ||
| [[Nessafof]] | | [[Nessafof]] (7-limit) | ||
|- | |- | ||
| 6 | | 6 | ||
| 51\282<br>(4\282) | | 51\282<br>(4\282) | ||
| 217.02<br>(17.02) | | 217.02<br>(17.02) | ||
| | | 17/15<br>(105/104) | ||
| [[Stearnscape]] | | [[Stearnscape]] | ||
|- | |||
| 6 | |||
| 80\282<br>(14\282) | |||
| 340.43<br>(59.57) | |||
| 162/133<br>(88/85) | |||
| [[Semiseptichrome]] | |||
|- | |- | ||
| 6 | | 6 | ||
Line 132: | Line 142: | ||
| [[Sextile]] | | [[Sextile]] | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Jupiter]] | |||
[[Category: | [[Category:Septisuperfourth]] | ||
[[Category: |
Latest revision as of 15:31, 16 March 2025
← 281edo | 282edo | 283edo → |
282 equal divisions of the octave (abbreviated 282edo or 282ed2), also called 282-tone equal temperament (282tet) or 282 equal temperament (282et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 282 equal parts of about 4.26 ¢ each. Each step represents a frequency ratio of 21/282, or the 282nd root of 2.
Theory
282edo is the smallest edo distinctly consistent through to the 23-odd-limit, and also the smallest consistent to the 29-odd-limit. It shares the same 3rd, 7th, and 13th harmonics with 94edo (282 = 3 × 94), as well as 11/10 and 20/17 (supporting the garistearn temperament). It has a distinct sharp tendency for odd harmonics up to 29.
The equal temperament tempers out 6144/6125 (porwell comma), 118098/117649 (stearnsma), and 250047/250000 (landscape comma) in the 7-limit, and 540/539 and 5632/5625 in the 11-limit, so that it provides the optimal patent val for the jupiter temperament; it also tempers out 4000/3993 and 234375/234256, providing the optimal patent val for septisuperfourth temperament. In the 13-limit, it tempers out 729/728, 1575/1573, 1716/1715, 2080/2079, and 10648/10647.
It allows essentially tempered chords including swetismic chords, squbemic chords, and petrmic chords in the 13-odd-limit, in addition to nicolic chords in the 15-odd-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.17 | +0.92 | +1.39 | +1.87 | +2.03 | +1.43 | +0.36 | +1.51 | +0.21 | -0.35 |
Relative (%) | +0.0 | +4.1 | +21.6 | +32.6 | +44.0 | +47.6 | +33.5 | +8.4 | +35.6 | +4.9 | -8.3 | |
Steps (reduced) |
282 (0) |
447 (165) |
655 (91) |
792 (228) |
976 (130) |
1044 (198) |
1153 (25) |
1198 (70) |
1276 (148) |
1370 (242) |
1397 (269) |
Subsets and supersets
Since 282 factors into primes as 2 × 3 × 47, 282edo has subset edos 2, 3, 47, 94, and 141.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [32 -7 -9⟩, [-7 22 -12⟩ | [⟨282 447 655]] | −0.1684 | 0.1671 | 3.93 |
2.3.5.7 | 6144/6125, 118098/117649, 250047/250000 | [⟨282 447 655 792]] | −0.2498 | 0.2020 | 4.75 |
2.3.5.7.11 | 540/539, 4000/3993, 5632/5625, 137781/137500 | [⟨282 447 655 792 976]] | −0.3081 | 0.2151 | 5.06 |
2.3.5.7.11.13 | 540/539, 729/728, 1575/1573, 2200/2197, 3584/3575 | [⟨282 447 655 792 976 1044]] | −0.3480 | 0.2156 | 5.07 |
2.3.5.7.11.13.17 | 540/539, 729/728, 936/935, 1156/1155, 1575/1573, 2200/2197 | [⟨282 447 655 792 976 1044 1153]] | −0.3481 | 0.1996 | 4.69 |
2.3.5.7.11.13.17.19 | 456/455, 540/539, 729/728, 936/935, 969/968, 1156/1155, 1575/1573 | [⟨282 447 655 792 976 1044 1153 1198]] | −0.3152 | 0.2061 | 4.84 |
2.3.5.7.11.13.17.19.23 | 456/455, 540/539, 729/728, 760/759, 936/935, 969/968, 1156/1155, 1288/1287 | [⟨282 447 655 792 976 1044 1153 1198 1276]] | −0.3173 | 0.1944 | 4.57 |
- 282et has a lower relative error than any previous equal temperaments in the 23-limit, past 270 and before 311.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 13\282 | 55.32 | 33/32 | Escapade |
1 | 133\282 | 565.96 | 4096/2835 | Alphatrident (7-limit) |
2 | 13\282 | 55.32 | 33/32 | Septisuperfourth |
2 | 43\282 | 182.98 | 10/9 | Unidecmic |
3 | 33\282 | 140.43 | 243/224 | Septichrome |
3 | 37\282 | 157.45 | 35/32 | Nessafof (7-limit) |
6 | 51\282 (4\282) |
217.02 (17.02) |
17/15 (105/104) |
Stearnscape |
6 | 80\282 (14\282) |
340.43 (59.57) |
162/133 (88/85) |
Semiseptichrome |
6 | 117\282 (23\282) |
497.87 (97.87) |
4/3 (128/121) |
Sextile |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct