271edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>hstraub
**Imported revision 238141801 - Original comment: **
 
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(13 intermediate revisions by 10 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2011-06-22 06:49:10 UTC</tt>.<br>
 
: The original revision id was <tt>238141801</tt>.<br>
== Theory ==
: The revision comment was: <tt></tt><br>
271edo is the highest edo where the [[3/2|perfect fifth]] has greater absolute error than [[12edo]]. It is in[[consistent]] in the [[5-odd-limit]]. Using the [[patent val]] nonetheless, the equal temperament [[tempering out|tempers out]] [[4000/3969]] and [[65625/65536]] in the 7-limit, [[896/891]] and 1375/1372 in the 11-limit, and [[352/351]], [[364/363]], [[676/675]], [[1575/1573]] and [[2200/2197]] in the 13-limit. It is the [[optimal patent val]] for the [[pepperoni]] temperament, tempering out 352/351 and 364/363 on the 2.3.11/7.13/7 [[subgroup]] of the 13-limit.
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
 
<h4>Original Wikitext content:</h4>
=== Odd harmonics ===
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Scales=
{{Harmonics in equal|271}}
[[pepperoni7]]
 
[[pepperoni12]]</pre></div>
=== Subsets and supersets ===
<h4>Original HTML content:</h4>
271edo is the 58th [[prime edo]].
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;271edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Scales&lt;/h1&gt;
 
&lt;a class="wiki_link" href="/pepperoni7"&gt;pepperoni7&lt;/a&gt;&lt;br /&gt;
== Scales ==
&lt;a class="wiki_link" href="/pepperoni12"&gt;pepperoni12&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
* [[Pepperoni7]]
* [[Pepperoni12]]
* [[Cantonpenta]]
 
[[Category:Pepperoni]]

Latest revision as of 07:00, 20 February 2025

← 270edo 271edo 272edo →
Prime factorization 271 (prime)
Step size 4.42804 ¢ 
Fifth 159\271 (704.059 ¢)
Semitones (A1:m2) 29:18 (128.4 ¢ : 79.7 ¢)
Dual sharp fifth 159\271 (704.059 ¢)
Dual flat fifth 158\271 (699.631 ¢)
Dual major 2nd 46\271 (203.69 ¢)
Consistency limit 3
Distinct consistency limit 3

271 equal divisions of the octave (abbreviated 271edo or 271ed2), also called 271-tone equal temperament (271tet) or 271 equal temperament (271et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 271 equal parts of about 4.43 ¢ each. Each step represents a frequency ratio of 21/271, or the 271st root of 2.

Theory

271edo is the highest edo where the perfect fifth has greater absolute error than 12edo. It is inconsistent in the 5-odd-limit. Using the patent val nonetheless, the equal temperament tempers out 4000/3969 and 65625/65536 in the 7-limit, 896/891 and 1375/1372 in the 11-limit, and 352/351, 364/363, 676/675, 1575/1573 and 2200/2197 in the 13-limit. It is the optimal patent val for the pepperoni temperament, tempering out 352/351 and 364/363 on the 2.3.11/7.13/7 subgroup of the 13-limit.

Odd harmonics

Approximation of odd harmonics in 271edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +2.10 -1.07 +0.92 -0.22 +2.19 +0.80 +1.03 +1.32 -0.83 -1.41 +0.51
Relative (%) +47.5 -24.3 +20.7 -5.0 +49.4 +18.1 +23.3 +29.8 -18.8 -31.8 +11.5
Steps
(reduced)
430
(159)
629
(87)
761
(219)
859
(46)
938
(125)
1003
(190)
1059
(246)
1108
(24)
1151
(67)
1190
(106)
1226
(142)

Subsets and supersets

271edo is the 58th prime edo.

Scales