241edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 338146166 - Original comment: ** |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(15 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
241edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]]. It has a sharp tendency, with [[prime harmonic]]s 3 through 13 all tuned sharp. As an equal temperament, it [[tempering out|tempers out]] [[78732/78125]] in the [[5-limit]], [[19683/19600]] and [[3136/3125]] in the [[7-limit]], [[540/539]], 43923/43904, [[65536/65219]], and [[151263/151250]] in the [[11-limit]], and [[351/350]], [[676/675]], [[729/728]], [[1001/1000]] and [[2080/2079]] in the [[13-limit]]. It provides the [[optimal patent val]] for [[subpental]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|241}} | |||
=== Subsets and supersets === | |||
241edo is the 53rd [[prime edo]]. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 382 -241 }} | |||
| {{mapping| 241 382 }} | |||
| −0.038 | |||
| 0.038 | |||
| 0.76 | |||
|- | |||
| 2.3.5 | |||
| 78732/78125, {{monzo| 56 -28 -5 }} | |||
| {{mapping| 241 382 560 }} | |||
| −0.322 | |||
| 0.403 | |||
| 8.10 | |||
|- | |||
| 2.3.5.7 | |||
| 3136/3125, 19683/19600, 829940/823543 | |||
| {{mapping| 241 382 560 677 }} | |||
| −0.431 | |||
| 0.397 | |||
| 7.97 | |||
|- | |||
| 2.3.5.7.11 | |||
| 540/539, 3136/3125, 8019/8000, 15488/15435 | |||
| {{mapping| 241 382 560 677 834 }} | |||
| −0.425 | |||
| 0.355 | |||
| 7.14 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 351/350, 540/539, 676/675, 3136/3125, 10648/10647 | |||
| {{mapping| 241 382 560 677 834 892 }} | |||
| −0.397 | |||
| 0.330 | |||
| 6.63 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 20\241 | |||
| 99.59 | |||
| 200/189 | |||
| [[Quintagar]] / [[quinsandric]] | |||
|- | |||
| 1 | |||
| 50\241 | |||
| 248.96 | |||
| {{monzo| -26 18 -1 }} | |||
| [[Monzismic]] | |||
|- | |||
| 1 | |||
| 76\241 | |||
| 378.42 | |||
| 56/45 | |||
| [[Subpental]] | |||
|- | |||
| 1 | |||
| 89\241 | |||
| 443.15 | |||
| 162/125 | |||
| [[Sensipent]] | |||
|- | |||
| 1 | |||
| 100\241 | |||
| 497.93 | |||
| 4/3 | |||
| [[Gary]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Subpental]] |
Latest revision as of 14:23, 20 February 2025
← 240edo | 241edo | 242edo → |
241 equal divisions of the octave (abbreviated 241edo or 241ed2), also called 241-tone equal temperament (241tet) or 241 equal temperament (241et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 241 equal parts of about 4.98 ¢ each. Each step represents a frequency ratio of 21/241, or the 241st root of 2.
Theory
241edo is distinctly consistent in the 15-odd-limit. It has a sharp tendency, with prime harmonics 3 through 13 all tuned sharp. As an equal temperament, it tempers out 78732/78125 in the 5-limit, 19683/19600 and 3136/3125 in the 7-limit, 540/539, 43923/43904, 65536/65219, and 151263/151250 in the 11-limit, and 351/350, 676/675, 729/728, 1001/1000 and 2080/2079 in the 13-limit. It provides the optimal patent val for subpental.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.12 | +2.07 | +2.13 | +1.38 | +0.97 | -0.39 | +1.24 | -0.89 | +1.13 | +0.19 |
Relative (%) | +0.0 | +2.4 | +41.5 | +42.7 | +27.7 | +19.4 | -7.9 | +24.9 | -17.8 | +22.7 | +3.9 | |
Steps (reduced) |
241 (0) |
382 (141) |
560 (78) |
677 (195) |
834 (111) |
892 (169) |
985 (21) |
1024 (60) |
1090 (126) |
1171 (207) |
1194 (230) |
Subsets and supersets
241edo is the 53rd prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [382 -241⟩ | [⟨241 382]] | −0.038 | 0.038 | 0.76 |
2.3.5 | 78732/78125, [56 -28 -5⟩ | [⟨241 382 560]] | −0.322 | 0.403 | 8.10 |
2.3.5.7 | 3136/3125, 19683/19600, 829940/823543 | [⟨241 382 560 677]] | −0.431 | 0.397 | 7.97 |
2.3.5.7.11 | 540/539, 3136/3125, 8019/8000, 15488/15435 | [⟨241 382 560 677 834]] | −0.425 | 0.355 | 7.14 |
2.3.5.7.11.13 | 351/350, 540/539, 676/675, 3136/3125, 10648/10647 | [⟨241 382 560 677 834 892]] | −0.397 | 0.330 | 6.63 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 20\241 | 99.59 | 200/189 | Quintagar / quinsandric |
1 | 50\241 | 248.96 | [-26 18 -1⟩ | Monzismic |
1 | 76\241 | 378.42 | 56/45 | Subpental |
1 | 89\241 | 443.15 | 162/125 | Sensipent |
1 | 100\241 | 497.93 | 4/3 | Gary |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct