12276edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 557183285 - Original comment: **
m Cleanup & + category
 
(19 intermediate revisions by 13 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-08-22 19:48:39 UTC</tt>.<br>
 
: The original revision id was <tt>557183285</tt>.<br>
12276 is a strong 11-limit system, with a lower 11-limit relative error than any lower division aside from [[6691edo|6691]]. 12276 tempers out the [[Kirnberger's atom|atom]] and the [[septimal ruthenia]], so that the Pythagorean and syntonic commas an be approximated by 12 and 11 schismas, 240 and 220 steps respectively, and septimal comma is represented by 1/44 of the octave, 279 steps.
: The revision comment was: <tt></tt><br>
 
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
=== Prime harmonics ===
<h4>Original Wikitext content:</h4>
{{Harmonics in equal|12276|columns=11}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 12276 division divides the octave into equal steps of size 0.097752 cents. It is a strong 11-limit system, with a lower 11-limit relative error than any division aside from [[6691edo|6691]]. It factors as 12276 = 2^2 * 3^2 * 11 * 31, and among its divisors are [[12edo|12]], [[22edo|22]], [[31edo|31]], [[99edo|99]] and [[198edo|198]].</pre></div>
 
<h4>Original HTML content:</h4>
=== Subsets and supersets ===
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;12276edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 12276 division divides the octave into equal steps of size 0.097752 cents. It is a strong 11-limit system, with a lower 11-limit relative error than any division aside from &lt;a class="wiki_link" href="/6691edo"&gt;6691&lt;/a&gt;. It factors as 12276 = 2^2 * 3^2 * 11 * 31, and among its divisors are &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99&lt;/a&gt; and &lt;a class="wiki_link" href="/198edo"&gt;198&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
12276edo factors into primes as {{nowrap| 2<sup>2</sup> × 3<sup>2</sup> × 11 × 31 }}, and among its divisors are [[12edo|12]], [[22edo|22]], [[31edo|31]], [[99edo|99]] and [[198edo|198]]. This creates a unit known as the ''[[prima]]'', useful for measurement of 11-limit intervals and commas. A prima is almost exactly three [[tuning unit]]s.
 
[[Category:3-limit record edos|#####]] <!-- 5-digit number -->

Latest revision as of 16:34, 28 July 2025

← 12275edo 12276edo 12277edo →
Prime factorization 22 × 32 × 11 × 31
Step size 0.0977517 ¢ 
Fifth 7181\12276 (701.955 ¢)
(semiconvergent)
Semitones (A1:m2) 1163:923 (113.7 ¢ : 90.22 ¢)
Consistency limit 17
Distinct consistency limit 17

12276 equal divisions of the octave (abbreviated 12276edo or 12276ed2), also called 12276-tone equal temperament (12276tet) or 12276 equal temperament (12276et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 12276 equal parts of about 0.0978 ¢ each. Each step represents a frequency ratio of 21/12276, or the 12276th root of 2.

12276 is a strong 11-limit system, with a lower 11-limit relative error than any lower division aside from 6691. 12276 tempers out the atom and the septimal ruthenia, so that the Pythagorean and syntonic commas an be approximated by 12 and 11 schismas, 240 and 220 steps respectively, and septimal comma is represented by 1/44 of the octave, 279 steps.

Prime harmonics

Approximation of prime harmonics in 12276edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0000 +0.0000 +0.0010 -0.0087 +0.0017 +0.0393 +0.0299 +0.0432 -0.0241 +0.0416 +0.0280
Relative (%) +0.0 +0.0 +1.1 -8.9 +1.7 +40.2 +30.6 +44.2 -24.7 +42.5 +28.6
Steps
(reduced)
12276
(0)
19457
(7181)
28504
(3952)
34463
(9911)
42468
(5640)
45427
(8599)
50178
(1074)
52148
(3044)
55531
(6427)
59637
(10533)
60818
(11714)

Subsets and supersets

12276edo factors into primes as 22 × 32 × 11 × 31, and among its divisors are 12, 22, 31, 99 and 198. This creates a unit known as the prima, useful for measurement of 11-limit intervals and commas. A prima is almost exactly three tuning units.