53edt: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''53EDT''' is the equal division of the third harmonic into 53 parts of 35.8859 cents each, corresponding to 33.4393 edo. It has a generally sharp tenden..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(9 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
'''53EDT''' is the [[Edt|equal division of the third harmonic]] into 53 parts of 35.8859 [[cent|cents]] each, corresponding to 33.4393 [[edo]]. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; 891/875, 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup). | {{Infobox ET}} | ||
'''53EDT''' is the [[Edt|equal division of the third harmonic]] into 53 parts of 35.8859 [[cent|cents]] each, corresponding to 33.4393 [[edo]]. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; [[891/875|891/875,]] 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup). | |||
== | == Harmonics == | ||
{{Harmonics in equal | |||
| steps = 53 | |||
| num = 3 | |||
| denom = 1 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 53 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} | |||
== Intervals == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Degree | ||
! | ! Cents value | ||
! | ! Hekts | ||
! | ! Corresponding <br>JI intervals | ||
! Comments | |||
|- | |- | ||
| | 0 | | colspan="3" | 0 | ||
| '''exact [[1/1]]''' | |||
| | |||
|- | |- | ||
| 1 | |||
| 35.8859 | |||
| | [[50/49]], [[49/48]] | | 24.5283 | ||
| [[50/49]], [[49/48]] | |||
| | |||
|- | |- | ||
| 2 | |||
| 71.7719 | |||
| | [[25/24]] | | 49.0566 | ||
| [[25/24]] | |||
| | |||
|- | |- | ||
| 3 | |||
| 107.6578 | |||
| | | | 73.5849 | ||
| [[17/16]], [[16/15]] | |||
| | |||
|- | |- | ||
| 4 | |||
| 143.5438 | |||
| | 38/35 | | 98.1132 | ||
| 38/35 | |||
| | |||
|- | |- | ||
| 5 | |||
| 179.4297 | |||
| | 51/46, 132/119 | | 122.6415 | ||
| 51/46, 132/119 | |||
| | |||
|- | |- | ||
| 6 | |||
| 215.3157 | |||
| | | | 147.1698 | ||
| 17/15 | |||
| | |||
|- | |- | ||
| 7 | |||
| 251.2016 | |||
| | | | 171.6981 | ||
| 15/13 | |||
| | |||
|- | |- | ||
| 8 | |||
| 287.0875 | |||
| | | | 196.2264 | ||
| 33/28, 13/11 | |||
| | |||
|- | |- | ||
| 9 | |||
| 322.9735 | |||
| | | | 220.7547 | ||
| 6/5 | |||
| | |||
|- | |- | ||
| 10 | |||
| 358.8594 | |||
| | [[16/13]] | | 245.283 | ||
| [[16/13]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 394.7454 | |||
| | 49/39 | | 269.8113 | ||
| [[5/4]], 49/39 | |||
| | |||
|- | |- | ||
| 12 | |||
| 430.6313 | |||
| | 50/39 | | 594.3396 | ||
| [[9/7]], 50/39 | |||
| | |||
|- | |- | ||
| 13 | |||
| 466.5173 | |||
| | | | 318.8679 | ||
| 21/16 | |||
| | |||
|- | |- | ||
| 14 | |||
| 502.4032 | |||
| | | | 343.3962 | ||
| [[4/3]], 171/128 | |||
| | |||
|- | |- | ||
| 15 | |||
| 538.2892 | |||
| | [[15/11]] | | 367.9245 | ||
| [[15/11]] | |||
| | |||
|- | |- | ||
| 16 | |||
| 574.1751 | |||
| | 39/28 | | 392.4528 | ||
| 39/28 | |||
| | |||
|- | |- | ||
| 17 | |||
| 610.061 | |||
| | | | 416.9811 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 18 | |||
| 645.947 | |||
| | | | 441.5094 | ||
| 35/24 | |||
| | |||
|- | |- | ||
| 19 | |||
| 681.8329 | |||
| | 126/85 | | 466.0377 | ||
| 126/85, 40/27 | |||
| | |||
|- | |- | ||
| 20 | |||
| 717.7189 | |||
| | | | 490.566 | ||
| | | | ||
| pseudo-3/2 | |||
|- | |- | ||
| 21 | |||
| 753.6048 | |||
| | [[17/11]] | | 515.0943 | ||
| [[17/11]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 789.4908 | |||
| | [[30/19]] | | 539.6226 | ||
| [[30/19]] | |||
| | |||
|- | |- | ||
| 23 | |||
| 825.3767 | |||
| | | | 564.1509 | ||
| [[13/8]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 861.2626 | |||
| | | | 588.67945 | ||
| | |||
| | |||
|- | |- | ||
| 25 | |||
| 897.1486 | |||
| | | | 613.20755 | ||
| 42/25, 32/19 | |||
| | |||
|- | |- | ||
| 26 | |||
| 933.0345 | |||
| | [[12/7]] | | 637.73585 | ||
| [[12/7]] | |||
| | |||
|- | |- | ||
| 27 | |||
| 968.9205 | |||
| | [[7/4]] | | 662.26415 | ||
| [[7/4]] | |||
| | |||
|- | |- | ||
| 28 | |||
| 1004.8064 | |||
| | | | 686.79245 | ||
| 25/14, 57/32 | |||
| | |||
|- | |- | ||
| 29 | |||
| 1040.6924 | |||
| | | | 711.32075 | ||
| | |||
| | |||
|- | |- | ||
| 30 | |||
| 1076.5783 | |||
| | | | 735.8491 | ||
| 24/13 | |||
| | |||
|- | |- | ||
| 31 | |||
| 1112.4642 | |||
| | [[19/10]] | | 760.3774 | ||
| [[19/10]] | |||
| | |||
|- | |- | ||
| 32 | |||
| 1148.3502 | |||
| | 33/17 | | 784.9057 | ||
| 33/17 | |||
| | |||
|- | |- | ||
| 33 | |||
| 1184.2361 | |||
| | | | 809.434 | ||
| | | | ||
| pseudooctave | |||
|- | |- | ||
| 34 | |||
| 1220.1221 | |||
| | 85/42 | | 833.9623 | ||
| 85/42, 81/40 | |||
| | |||
|- | |- | ||
| 35 | |||
| 1256.008 | |||
| | 95/46 | | 858.4906 | ||
| 95/46 | |||
| | |||
|- | |- | ||
| 36 | |||
| 1291.894 | |||
| | | | 883.0189 | ||
| 21/10 | |||
| | |||
|- | |- | ||
| 37 | |||
| 1327.7799 | |||
| | [[14/13|28/13]] | | 907.5472 | ||
| [[14/13|28/13]] | |||
| | |||
|- | |- | ||
| 38 | |||
| 1363.6658 | |||
| | [[11/5]] | | 932.0755 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 1399.5518 | |||
| | [[64/57|128/57]] | | 956.6038 | ||
| 9/4, [[64/57|128/57]] | |||
| | |||
|- | |- | ||
| 40 | |||
| 1435.4377 | |||
| | | | 981.1321 | ||
| 16/7 | |||
| | |||
|- | |- | ||
| 41 | |||
| 1471.3237 | |||
| | 117/50 | | 1005.3304 | ||
| 7/3, 117/50 | |||
| | |||
|- | |- | ||
| 42 | |||
| 1507.2096 | |||
| | 117/49 | | 1303.1887 | ||
| 12/5, 117/49 | |||
| | |||
|- | |- | ||
| 43 | |||
| 1543.0956 | |||
| | [[39/32|39/16]] | | 1054.717 | ||
| [[39/32|39/16]] | |||
| | |||
|- | |- | ||
| 44 | |||
| 1578.9815 | |||
| | | | 1079.2453 | ||
| 5/2 | |||
| | |||
|- | |- | ||
| 45 | |||
| 1614.8675 | |||
| | | | 1130.7736 | ||
| 28/11, 33/13 | |||
| | |||
|- | |- | ||
| 46 | |||
| 1650.7534 | |||
| | | | 1128.3019 | ||
| 13/5 | |||
| | |||
|- | |- | ||
| 47 | |||
| 1686.6393 | |||
| | | | 1152.8302 | ||
| 45/17 | |||
| | |||
|- | |- | ||
| 48 | |||
| 1722.5253 | |||
| | 119/44 | | 1177.3585 | ||
| 119/44 | |||
| | |||
|- | |- | ||
| 49 | |||
| 1758.4112 | |||
| | | | 1201.8868 | ||
| 105/38 | |||
| | |||
|- | |- | ||
| 50 | |||
| 1794.2972 | |||
| | | | 1226.4151 | ||
| 48/17, 45/16 | |||
| | |||
|- | |- | ||
| 51 | |||
| 1830.1831 | |||
| | [[36/25|72/25]] | | 1250.9434 | ||
| [[36/25|72/25]] | |||
| | |||
|- | |- | ||
| 52 | |||
| 1866.0691 | |||
| | | | 1275.4717 | ||
| 147/50, 144/49 | |||
| | |||
|- | |- | ||
| 53 | |||
| 1901.955 | |||
| | '''exact [[3/1]]''' | | 1300 | ||
| '''exact [[3/1]]''' | |||
| | |||
|} | |} | ||
Latest revision as of 19:23, 1 August 2025
← 52edt | 53edt | 54edt → |
53EDT is the equal division of the third harmonic into 53 parts of 35.8859 cents each, corresponding to 33.4393 edo. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; 891/875, 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup).
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.8 | +0.0 | +4.4 | +12.8 | -15.8 | +4.5 | -11.4 | +0.0 | -3.0 | +11.5 | +4.4 |
Relative (%) | -43.9 | +0.0 | +12.1 | +35.6 | -43.9 | +12.4 | -31.8 | +0.0 | -8.3 | +31.9 | +12.1 | |
Steps (reduced) |
33 (33) |
53 (0) |
67 (14) |
78 (25) |
86 (33) |
94 (41) |
100 (47) |
106 (0) |
111 (5) |
116 (10) |
120 (14) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.3 | -11.3 | +12.8 | +8.7 | +11.4 | -15.8 | -1.7 | +17.1 | +4.5 | -4.3 | -9.5 |
Relative (%) | +26.0 | -31.5 | +35.6 | +24.3 | +31.8 | -43.9 | -4.8 | +47.8 | +12.4 | -12.0 | -26.5 | |
Steps (reduced) |
124 (18) |
127 (21) |
131 (25) |
134 (28) |
137 (31) |
139 (33) |
142 (36) |
145 (39) |
147 (41) |
149 (43) |
151 (45) |
Intervals
Degree | Cents value | Hekts | Corresponding JI intervals |
Comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 35.8859 | 24.5283 | 50/49, 49/48 | |
2 | 71.7719 | 49.0566 | 25/24 | |
3 | 107.6578 | 73.5849 | 17/16, 16/15 | |
4 | 143.5438 | 98.1132 | 38/35 | |
5 | 179.4297 | 122.6415 | 51/46, 132/119 | |
6 | 215.3157 | 147.1698 | 17/15 | |
7 | 251.2016 | 171.6981 | 15/13 | |
8 | 287.0875 | 196.2264 | 33/28, 13/11 | |
9 | 322.9735 | 220.7547 | 6/5 | |
10 | 358.8594 | 245.283 | 16/13 | |
11 | 394.7454 | 269.8113 | 5/4, 49/39 | |
12 | 430.6313 | 594.3396 | 9/7, 50/39 | |
13 | 466.5173 | 318.8679 | 21/16 | |
14 | 502.4032 | 343.3962 | 4/3, 171/128 | |
15 | 538.2892 | 367.9245 | 15/11 | |
16 | 574.1751 | 392.4528 | 39/28 | |
17 | 610.061 | 416.9811 | 10/7 | |
18 | 645.947 | 441.5094 | 35/24 | |
19 | 681.8329 | 466.0377 | 126/85, 40/27 | |
20 | 717.7189 | 490.566 | pseudo-3/2 | |
21 | 753.6048 | 515.0943 | 17/11 | |
22 | 789.4908 | 539.6226 | 30/19 | |
23 | 825.3767 | 564.1509 | 13/8 | |
24 | 861.2626 | 588.67945 | ||
25 | 897.1486 | 613.20755 | 42/25, 32/19 | |
26 | 933.0345 | 637.73585 | 12/7 | |
27 | 968.9205 | 662.26415 | 7/4 | |
28 | 1004.8064 | 686.79245 | 25/14, 57/32 | |
29 | 1040.6924 | 711.32075 | ||
30 | 1076.5783 | 735.8491 | 24/13 | |
31 | 1112.4642 | 760.3774 | 19/10 | |
32 | 1148.3502 | 784.9057 | 33/17 | |
33 | 1184.2361 | 809.434 | pseudooctave | |
34 | 1220.1221 | 833.9623 | 85/42, 81/40 | |
35 | 1256.008 | 858.4906 | 95/46 | |
36 | 1291.894 | 883.0189 | 21/10 | |
37 | 1327.7799 | 907.5472 | 28/13 | |
38 | 1363.6658 | 932.0755 | 11/5 | |
39 | 1399.5518 | 956.6038 | 9/4, 128/57 | |
40 | 1435.4377 | 981.1321 | 16/7 | |
41 | 1471.3237 | 1005.3304 | 7/3, 117/50 | |
42 | 1507.2096 | 1303.1887 | 12/5, 117/49 | |
43 | 1543.0956 | 1054.717 | 39/16 | |
44 | 1578.9815 | 1079.2453 | 5/2 | |
45 | 1614.8675 | 1130.7736 | 28/11, 33/13 | |
46 | 1650.7534 | 1128.3019 | 13/5 | |
47 | 1686.6393 | 1152.8302 | 45/17 | |
48 | 1722.5253 | 1177.3585 | 119/44 | |
49 | 1758.4112 | 1201.8868 | 105/38 | |
50 | 1794.2972 | 1226.4151 | 48/17, 45/16 | |
51 | 1830.1831 | 1250.9434 | 72/25 | |
52 | 1866.0691 | 1275.4717 | 147/50, 144/49 | |
53 | 1901.955 | 1300 | exact 3/1 |