|
|
(45 intermediate revisions by 17 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-08-01 11:30:27 UTC</tt>.<br>
| |
| : The original revision id was <tt>588470276</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**//101-EDO//** divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[Schismatic family|grackle temperament]]. It is the 26th [[prime numbers|prime]] edo. The 101cd val provides an excellent tuning for [[Magic family#Witchcraft|witchcraft temperament]], falling between the 13 and 15 limit least squares tuning.
| |
|
| |
|
| [[5-limit]] commas: 32805/32768, <5 13 -11| | | == Theory == |
| | 101edo is in[[consistent]] in the [[5-odd-limit]], with [[harmonic]]s [[5/1|5]] and [[7/1|7]] falling about halfway between its steps. As such, {{val| 101 160 '''235''' '''284''' }} ([[patent val]]) and {{val| 101 160 '''234''' '''283''' }} (101cd) are about as viable. Using the patent val, it [[tempering out|tempers out]] 32805/32768 ([[schisma]]) and 51018336/48828125 in the 5-limit; [[126/125]] and [[2430/2401]] in the [[7-limit]]. It can be used to tune the [[grackle]] temperament. The 101cd val provides an excellent tuning for [[witchcraft]] temperament, falling between the 13- and 15-odd-limit least squares tuning. |
|
| |
|
| [[7-limit]] commas: 126/125, 32805/32768, 2430/2401
| | === Odd harmonics === |
| | {{Harmonics in equal|101}} |
|
| |
|
| ==__Some important MOS scales:__== | | === Subsets and supersets === |
| | 101edo is the 26th [[prime edo]], following [[97edo]] and before [[103edo]]. [[202edo]], which doubles it, provides a good correction to the 5th, 7th, and 11th harmonics. |
|
| |
|
| **25 13 25 25 13:** //3L2s MOS// (Pentatonic)
| | == Intervals == |
| || 25/101 || 297.03 ||
| | {{Interval table}} |
| || 38/101 || 451.485 ||
| |
| || 63/101 || 748.515 ||
| |
| || 88/101 || 1045.545 ||
| |
| **17 17 8 17 17 17 8:** //5L2s MOS// (Diatonic Pythagorean)
| |
| || **17/101** || **201.98** ||
| |
| || 34/101 || 403.96 ||
| |
| || **42/101** || **499.01** ||
| |
| || **59/101** || **700.99** ||
| |
| || **76/101** || **902.97** ||
| |
| || 93/101 || 1104.95 ||
| |
| **13 13 13 13 13 13 13 10:** //7L1s MOS// (Grumpy Octatonic)
| |
| || 13/101 || 154.455 ||
| |
| || 26/101 || 308.911 ||
| |
| || 39/101 || 463.366 ||
| |
| || 52/101 || 617.822 ||
| |
| || 65/101 || 772.277 ||
| |
| || 78/101 || 926.733 ||
| |
| || 91/101 || 1081.188 ||
| |
| **13 13 13 5 13 13 13 13 5:** //7L2s MOS// (Superdiatonic 1/13-tone 13;5 relation)
| |
| || **13/101** || **154.455** ||
| |
| || **26/101** || **308.911** ||
| |
| || 39/101 || 463.366 ||
| |
| || **44/101** || **522.772** ||
| |
| || **57/101** || **677.228** ||
| |
| || **70/101** || **831.683** ||
| |
| || **83/101** || **986.139** ||
| |
| || 96/101 || 1045.545 ||
| |
| **10 10 7 10 10 10 7 10 10 10 7:** //8L3s MOS// (Improper Sensi-11)
| |
| || **10/101** || **118.812** ||
| |
| || 20/101 || 237.624 ||
| |
| || **27/101** || **320.792** ||
| |
| || **37/101** || **439.604** ||
| |
| || **47/101** || **558.416** ||
| |
| || 57/101 || 677.228 ||
| |
| || **64/101** || **760.396** ||
| |
| || **74/101** || **879.218** ||
| |
| || **84/101** || **998.03** ||
| |
| || 94/101 || 1116.842 ||
| |
| **7 7 7 8 7 7 7 7 8 7 7 7 7 8:** //3L11s MOS// (Anti-Ketradektriatoh form)
| |
|
| |
|
| =Links= | | == Scales == |
| [[http://tech.groups.yahoo.com/group/tuning-math/message/11157|The Ellis duodene in 101-equal]]</pre></div>
| | === Mos scales === |
| <h4>Original HTML content:</h4>
| | * 3L 2s: 25 13 25 25 13 ((25 38 63 88 101)\101){{clarify}} <!-- why is this significant? --> |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>101edo</title></head><body><strong><em>101-EDO</em></strong> divides the <a class="wiki_link" href="/octave">octave</a> into 101 equal parts of 11.881 <a class="wiki_link" href="/cent">cent</a>s each. It can be used to tune the <a class="wiki_link" href="/Schismatic%20family">grackle temperament</a>. It is the 26th <a class="wiki_link" href="/prime%20numbers">prime</a> edo. The 101cd val provides an excellent tuning for <a class="wiki_link" href="/Magic%20family#Witchcraft">witchcraft temperament</a>, falling between the 13 and 15 limit least squares tuning.<br />
| | * Grackle[7] 5L 2s: 17 17 8 17 17 17 8 ((17 34 42 59 76 93)\101) |
| <br />
| | * Pine 7L 1s: 13 13 13 13 13 13 13 10 ((13 26 39 52 65 78 91 101)\101) |
| <a class="wiki_link" href="/5-limit">5-limit</a> commas: 32805/32768, &lt;5 13 -11|<br />
| | * Superdiatonic 1/13-tone 13;5 relation: 13 13 13 5 13 13 13 13 5 ((13 26 39 44 57 70 83 96 101)\101) |
| <br />
| | * Sensi[11] 8L 3s: 10 10 7 10 10 10 7 10 10 10 7 ((10 20 27 37 47 57 64 74 84 94)\101){{clarify}} <!-- which val? --> |
| <a class="wiki_link" href="/7-limit">7-limit</a> commas: 126/125, 32805/32768, 2430/2401<br />
| | * Anti-Ketradektriatoh 3L 11s: 7 7 7 8 7 7 7 7 8 7 7 7 7 8 ((7 14 22 29 36 43 50 58 65 72 79 86 93 101)\101) |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Some important MOS scales:"></a><!-- ws:end:WikiTextHeadingRule:0 --><u>Some important MOS scales:</u></h2>
| |
| <br />
| |
| <strong>25 13 25 25 13:</strong> <em>3L2s MOS</em> (Pentatonic)<br />
| |
|
| |
|
| | == Instruments == |
| | * [[Lumatone mapping for 101edo]] |
|
| |
|
| <table class="wiki_table">
| | == Music == |
| <tr>
| | ; [[Francium]] |
| <td>25/101<br />
| | * "Eggclent" from ''Eggs'' (2025) – [https://open.spotify.com/track/4S0BTeb9yDdMUuT1QJy26H Spotify] | [https://francium223.bandcamp.com/track/eggclent Bandcamp] | [https://www.youtube.com/watch?v=FAe4O71Mvj0 YouTube] |
| </td>
| |
| <td>297.03<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38/101<br />
| |
| </td>
| |
| <td>451.485<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63/101<br />
| |
| </td>
| |
| <td>748.515<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>88/101<br />
| |
| </td>
| |
| <td>1045.545<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <strong>17 17 8 17 17 17 8:</strong> <em>5L2s MOS</em> (Diatonic Pythagorean)<br />
| | == External links == |
| | * [http://tech.groups.yahoo.com/group/tuning-math/message/11157 The Ellis duodene in 101-equal] {{dead link}} |
|
| |
|
| | | [[Category:Armodue]] |
| <table class="wiki_table">
| | [[Category:Grackle]] |
| <tr>
| |
| <td><strong>17/101</strong><br />
| |
| </td>
| |
| <td><strong>201.98</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34/101<br />
| |
| </td>
| |
| <td>403.96<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>42/101</strong><br />
| |
| </td>
| |
| <td><strong>499.01</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>59/101</strong><br />
| |
| </td>
| |
| <td><strong>700.99</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>76/101</strong><br />
| |
| </td>
| |
| <td><strong>902.97</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>93/101<br />
| |
| </td>
| |
| <td>1104.95<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>13 13 13 13 13 13 13 10:</strong> <em>7L1s MOS</em> (Grumpy Octatonic)<br />
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>13/101<br />
| |
| </td>
| |
| <td>154.455<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26/101<br />
| |
| </td>
| |
| <td>308.911<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39/101<br />
| |
| </td>
| |
| <td>463.366<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52/101<br />
| |
| </td>
| |
| <td>617.822<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65/101<br />
| |
| </td>
| |
| <td>772.277<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78/101<br />
| |
| </td>
| |
| <td>926.733<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>91/101<br />
| |
| </td>
| |
| <td>1081.188<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>13 13 13 5 13 13 13 13 5:</strong> <em>7L2s MOS</em> (Superdiatonic 1/13-tone 13;5 relation)<br />
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td><strong>13/101</strong><br />
| |
| </td>
| |
| <td><strong>154.455</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>26/101</strong><br />
| |
| </td>
| |
| <td><strong>308.911</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39/101<br />
| |
| </td>
| |
| <td>463.366<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>44/101</strong><br />
| |
| </td>
| |
| <td><strong>522.772</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>57/101</strong><br />
| |
| </td>
| |
| <td><strong>677.228</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>70/101</strong><br />
| |
| </td>
| |
| <td><strong>831.683</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>83/101</strong><br />
| |
| </td>
| |
| <td><strong>986.139</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>96/101<br />
| |
| </td>
| |
| <td>1045.545<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>10 10 7 10 10 10 7 10 10 10 7:</strong> <em>8L3s MOS</em> (Improper Sensi-11)<br />
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td><strong>10/101</strong><br />
| |
| </td>
| |
| <td><strong>118.812</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20/101<br />
| |
| </td>
| |
| <td>237.624<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>27/101</strong><br />
| |
| </td>
| |
| <td><strong>320.792</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>37/101</strong><br />
| |
| </td>
| |
| <td><strong>439.604</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>47/101</strong><br />
| |
| </td>
| |
| <td><strong>558.416</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57/101<br />
| |
| </td>
| |
| <td>677.228<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>64/101</strong><br />
| |
| </td>
| |
| <td><strong>760.396</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>74/101</strong><br />
| |
| </td>
| |
| <td><strong>879.218</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>84/101</strong><br />
| |
| </td>
| |
| <td><strong>998.03</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>94/101<br />
| |
| </td>
| |
| <td>1116.842<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <strong>7 7 7 8 7 7 7 7 8 7 7 7 7 8:</strong> <em>3L11s MOS</em> (Anti-Ketradektriatoh form)<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Links"></a><!-- ws:end:WikiTextHeadingRule:2 -->Links</h1>
| |
| <a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11157" rel="nofollow">The Ellis duodene in 101-equal</a></body></html></pre></div>
| |
Prime factorization
|
101 (prime)
|
Step size
|
11.8812 ¢
|
Fifth
|
59\101 (700.99 ¢)
|
Semitones (A1:m2)
|
9:8 (106.9 ¢ : 95.05 ¢)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
101 equal divisions of the octave (abbreviated 101edo or 101ed2), also called 101-tone equal temperament (101tet) or 101 equal temperament (101et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 101 equal parts of about 11.9 ¢ each. Each step represents a frequency ratio of 21/101, or the 101st root of 2.
Theory
101edo is inconsistent in the 5-odd-limit, with harmonics 5 and 7 falling about halfway between its steps. As such, ⟨101 160 235 284] (patent val) and ⟨101 160 234 283] (101cd) are about as viable. Using the patent val, it tempers out 32805/32768 (schisma) and 51018336/48828125 in the 5-limit; 126/125 and 2430/2401 in the 7-limit. It can be used to tune the grackle temperament. The 101cd val provides an excellent tuning for witchcraft temperament, falling between the 13- and 15-odd-limit least squares tuning.
Odd harmonics
Approximation of prime harmonics in 101edo
Harmonic
|
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
23
|
29
|
31
|
Error
|
Absolute (¢)
|
+0.00
|
-0.96
|
+5.77
|
+5.43
|
-4.78
|
+3.04
|
+1.98
|
-0.48
|
+1.43
|
+4.09
|
-4.44
|
Relative (%)
|
+0.0
|
-8.1
|
+48.5
|
+45.7
|
-40.3
|
+25.6
|
+16.6
|
-4.1
|
+12.0
|
+34.4
|
-37.4
|
Steps (reduced)
|
101 (0)
|
160 (59)
|
235 (33)
|
284 (82)
|
349 (46)
|
374 (71)
|
413 (9)
|
429 (25)
|
457 (53)
|
491 (87)
|
500 (96)
|
Subsets and supersets
101edo is the 26th prime edo, following 97edo and before 103edo. 202edo, which doubles it, provides a good correction to the 5th, 7th, and 11th harmonics.
Intervals
Steps
|
Cents
|
Approximate ratios
|
Ups and downs notation
|
0
|
0
|
1/1
|
D
|
1
|
11.9
|
|
^D, ^^E♭♭
|
2
|
23.8
|
|
^^D, ^3E♭♭
|
3
|
35.6
|
|
^3D, ^4E♭♭
|
4
|
47.5
|
37/36, 38/37
|
^4D, v4E♭
|
5
|
59.4
|
29/28, 30/29
|
v4D♯, v3E♭
|
6
|
71.3
|
24/23
|
v3D♯, vvE♭
|
7
|
83.2
|
21/20, 43/41
|
vvD♯, vE♭
|
8
|
95
|
19/18
|
vD♯, E♭
|
9
|
106.9
|
17/16, 33/31
|
D♯, ^E♭
|
10
|
118.8
|
15/14
|
^D♯, ^^E♭
|
11
|
130.7
|
14/13, 41/38
|
^^D♯, ^3E♭
|
12
|
142.6
|
|
^3D♯, ^4E♭
|
13
|
154.5
|
|
^4D♯, v4E
|
14
|
166.3
|
|
v4D𝄪, v3E
|
15
|
178.2
|
41/37
|
v3D𝄪, vvE
|
16
|
190.1
|
29/26
|
vvD𝄪, vE
|
17
|
202
|
9/8
|
E
|
18
|
213.9
|
26/23, 43/38
|
^E, ^^F♭
|
19
|
225.7
|
41/36
|
^^E, ^3F♭
|
20
|
237.6
|
31/27, 39/34
|
^3E, ^4F♭
|
21
|
249.5
|
15/13, 37/32
|
^4E, v4F
|
22
|
261.4
|
43/37
|
v4E♯, v3F
|
23
|
273.3
|
34/29
|
v3E♯, vvF
|
24
|
285.1
|
|
vvE♯, vF
|
25
|
297
|
19/16
|
F
|
26
|
308.9
|
43/36
|
^F, ^^G♭♭
|
27
|
320.8
|
|
^^F, ^3G♭♭
|
28
|
332.7
|
23/19
|
^3F, ^4G♭♭
|
29
|
344.6
|
39/32
|
^4F, v4G♭
|
30
|
356.4
|
27/22
|
v4F♯, v3G♭
|
31
|
368.3
|
26/21
|
v3F♯, vvG♭
|
32
|
380.2
|
|
vvF♯, vG♭
|
33
|
392.1
|
|
vF♯, G♭
|
34
|
404
|
24/19
|
F♯, ^G♭
|
35
|
415.8
|
|
^F♯, ^^G♭
|
36
|
427.7
|
41/32
|
^^F♯, ^3G♭
|
37
|
439.6
|
|
^3F♯, ^4G♭
|
38
|
451.5
|
|
^4F♯, v4G
|
39
|
463.4
|
17/13
|
v4F𝄪, v3G
|
40
|
475.2
|
|
v3F𝄪, vvG
|
41
|
487.1
|
45/34
|
vvF𝄪, vG
|
42
|
499
|
4/3
|
G
|
43
|
510.9
|
39/29, 43/32
|
^G, ^^A♭♭
|
44
|
522.8
|
23/17
|
^^G, ^3A♭♭
|
45
|
534.7
|
|
^3G, ^4A♭♭
|
46
|
546.5
|
37/27
|
^4G, v4A♭
|
47
|
558.4
|
29/21, 40/29
|
v4G♯, v3A♭
|
48
|
570.3
|
32/23
|
v3G♯, vvA♭
|
49
|
582.2
|
7/5
|
vvG♯, vA♭
|
50
|
594.1
|
31/22, 38/27
|
vG♯, A♭
|
51
|
605.9
|
27/19, 44/31
|
G♯, ^A♭
|
52
|
617.8
|
10/7
|
^G♯, ^^A♭
|
53
|
629.7
|
23/16
|
^^G♯, ^3A♭
|
54
|
641.6
|
29/20, 42/29
|
^3G♯, ^4A♭
|
55
|
653.5
|
|
^4G♯, v4A
|
56
|
665.3
|
|
v4G𝄪, v3A
|
57
|
677.2
|
34/23
|
v3G𝄪, vvA
|
58
|
689.1
|
|
vvG𝄪, vA
|
59
|
701
|
3/2
|
A
|
60
|
712.9
|
|
^A, ^^B♭♭
|
61
|
724.8
|
41/27
|
^^A, ^3B♭♭
|
62
|
736.6
|
26/17
|
^3A, ^4B♭♭
|
63
|
748.5
|
37/24
|
^4A, v4B♭
|
64
|
760.4
|
45/29
|
v4A♯, v3B♭
|
65
|
772.3
|
|
v3A♯, vvB♭
|
66
|
784.2
|
|
vvA♯, vB♭
|
67
|
796
|
19/12
|
vA♯, B♭
|
68
|
807.9
|
43/27
|
A♯, ^B♭
|
69
|
819.8
|
45/28
|
^A♯, ^^B♭
|
70
|
831.7
|
21/13
|
^^A♯, ^3B♭
|
71
|
843.6
|
44/27
|
^3A♯, ^4B♭
|
72
|
855.4
|
|
^4A♯, v4B
|
73
|
867.3
|
38/23
|
v4A𝄪, v3B
|
74
|
879.2
|
|
v3A𝄪, vvB
|
75
|
891.1
|
|
vvA𝄪, vB
|
76
|
903
|
32/19
|
B
|
77
|
914.9
|
39/23
|
^B, ^^C♭
|
78
|
926.7
|
29/17, 41/24
|
^^B, ^3C♭
|
79
|
938.6
|
|
^3B, ^4C♭
|
80
|
950.5
|
26/15, 45/26
|
^4B, v4C
|
81
|
962.4
|
|
v4B♯, v3C
|
82
|
974.3
|
|
v3B♯, vvC
|
83
|
986.1
|
23/13
|
vvB♯, vC
|
84
|
998
|
16/9
|
C
|
85
|
1009.9
|
43/24
|
^C, ^^D♭♭
|
86
|
1021.8
|
|
^^C, ^3D♭♭
|
87
|
1033.7
|
|
^3C, ^4D♭♭
|
88
|
1045.5
|
|
^4C, v4D♭
|
89
|
1057.4
|
|
v4C♯, v3D♭
|
90
|
1069.3
|
13/7
|
v3C♯, vvD♭
|
91
|
1081.2
|
28/15, 43/23
|
vvC♯, vD♭
|
92
|
1093.1
|
32/17
|
vC♯, D♭
|
93
|
1105
|
36/19
|
C♯, ^D♭
|
94
|
1116.8
|
40/21
|
^C♯, ^^D♭
|
95
|
1128.7
|
23/12
|
^^C♯, ^3D♭
|
96
|
1140.6
|
29/15
|
^3C♯, ^4D♭
|
97
|
1152.5
|
37/19
|
^4C♯, v4D
|
98
|
1164.4
|
45/23
|
v4C𝄪, v3D
|
99
|
1176.2
|
|
v3C𝄪, vvD
|
100
|
1188.1
|
|
vvC𝄪, vD
|
101
|
1200
|
2/1
|
D
|
Scales
Mos scales
- 3L 2s: 25 13 25 25 13 ((25 38 63 88 101)\101)[clarification needed]
- Grackle[7] 5L 2s: 17 17 8 17 17 17 8 ((17 34 42 59 76 93)\101)
- Pine 7L 1s: 13 13 13 13 13 13 13 10 ((13 26 39 52 65 78 91 101)\101)
- Superdiatonic 1/13-tone 13;5 relation: 13 13 13 5 13 13 13 13 5 ((13 26 39 44 57 70 83 96 101)\101)
- Sensi[11] 8L 3s: 10 10 7 10 10 10 7 10 10 10 7 ((10 20 27 37 47 57 64 74 84 94)\101)[clarification needed]
- Anti-Ketradektriatoh 3L 11s: 7 7 7 8 7 7 7 7 8 7 7 7 7 8 ((7 14 22 29 36 43 50 58 65 72 79 86 93 101)\101)
Instruments
Music
- Francium
External links