139edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
TallKite (talk | contribs)
updated the color names
ArrowHead294 (talk | contribs)
mNo edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''139edo''' is the [[EDO|equal division of the octave]] into 139 parts of 8.6331 [[cent]]s each. It is inconsistent to the 5-limit and higher limit, with three mappings possible for the 5-limit: <139 220 323| (patent val), <139 221 323| (139b), and <139 220 322| (139c). Using the patent val, it tempers out the valentine comma, 1990656/1953125 and the lalagu comma, 43046721/41943040 in the 5-limit; 126/125, 1029/1024, and 4782969/4705960 in the 7-limit, supporting the 7-limit [[Starling temperaments|valentine temperament]]; 540/539, 1944/1925, 2835/2816, and 12005/11979 in the 11-limit; 364/363, 676/675, 1287/1280, 1701/1690, and 1716/1715 in the 13-limit. Using the 139bdf val, it tempers out [[Würschmidt comma]], 393216/390625 and 409600000/387420489 in the 5-limit; 245/243, 3125/3087, and 131072/127575 in the 7-limit; 176/175, 1232/1215, and 2560/2541 in the 11-limit; 275/273, 512/507, 625/624, 847/845, and 1625/1617 in the 13-limit. Using the 139ce val, it tempers out the [[Magic family|small diesis]], 3125/3072 and 22876792454961/21990232555520 in the 5-limit; 1029/1024, 3125/3087, and 19683/19600 in the 7-limit, supporting the 7-limit [[Magic family|trismegistus temperament]]; 540/539, 1331/1323, and 1815/1792 in the 11-limit; 275/273, 325/324, 847/845, 1287/1280, and 1575/1573 in the 13-limit. Using the 139df val, it tempers out 225/224, 51200/50421, and 157464/153125 in the 7-limit; 99/98, 176/175, and 15309/15125 in the 11-limit, supporting the 11-limit [[Marvel temperaments|interpental temperament]]; 144/143, 648/637, 847/845, 1575/1573, and 3159/3125 in the 13-limit. Using 139f val, it tempers out 144/143, 196/195, 351/350, 4096/4095, and 4455/4394 in the 13-limit.
{{Infobox ET}}
{{ED intro}}


139edo is the 34th [[prime EDO]].
139edo is in[[consistent]] to the [[5-odd-limit]] and higher limits, with three mappings possible for the 5-limit: {{val| 139 220 323 }} ([[patent val]]), {{val| 139 '''221''' 323 }} (139b), and {{val| 139 220 '''322''' }} (139c).  


[[Category:Edo]]
Using the patent val, it [[tempering out|tempers out]] 1990656/1953125 ([[valentine comma]]) and 43046721/41943040 ([[python comma]]) in the 5-limit; [[126/125]], [[1029/1024]], and 4782969/4705960 in the 7-limit, [[support]]ing the 7-limit [[valentine]] temperament; [[540/539]], 1944/1925, 2835/2816, and 12005/11979 in the 11-limit; [[364/363]], [[676/675]], [[1287/1280]], 1701/1690, and [[1716/1715]] in the 13-limit. Using the alternative 139f val, it tempers out [[144/143]], [[196/195]], [[351/350]], [[4096/4095]], and 4455/4394 in the 13-limit.
[[Category:Prime EDO]]
 
Using the 139df val, it tempers out [[225/224]], 51200/50421, and 157464/153125 in the 7-limit; [[99/98]], [[176/175]], and 15309/15125 in the 11-limit, supporting the 11-limit [[Marvel temperaments #Interpental|interpental]] temperament; 144/143, 648/637, [[847/845]], [[1575/1573]], and 3159/3125 in the 13-limit.
 
Using the 139ce val, it tempers out 3125/3072 ([[magic comma]]) and {{monzo| -42 28 -1 }} in the 5-limit; 1029/1024, [[3125/3087]], and [[19683/19600]] in the 7-limit, supporting the 7-limit [[trismegistus]] temperament; 540/539, 1331/1323, and 1815/1792 in the 11-limit; [[275/273]], [[325/324]], 847/845, 1287/1280, and 1575/1573 in the 13-limit.
 
Using the 139bdf val, it tempers out 393216/390625 ([[würschmidt comma]]), and 409600000/387420489 in the 5-limit; [[245/243]], 3125/3087, and 131072/127575 in the 7-limit; 176/175, 1232/1215, and 2560/2541 in the 11-limit; 275/273, [[512/507]], [[625/624]], 847/845, and 1625/1617 in the 13-limit.
 
=== Odd harmonics ===
{{Harmonics in equal|139}}
 
=== Subsets and supersets ===
139edo is the 34th [[prime edo]], following [[137edo]] and before [[149edo]].

Latest revision as of 16:37, 20 February 2025

← 138edo 139edo 140edo →
Prime factorization 139 (prime)
Step size 8.63309 ¢ 
Fifth 81\139 (699.281 ¢)
Semitones (A1:m2) 11:12 (94.96 ¢ : 103.6 ¢)
Consistency limit 3
Distinct consistency limit 3

139 equal divisions of the octave (abbreviated 139edo or 139ed2), also called 139-tone equal temperament (139tet) or 139 equal temperament (139et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 139 equal parts of about 8.63 ¢ each. Each step represents a frequency ratio of 21/139, or the 139th root of 2.

139edo is inconsistent to the 5-odd-limit and higher limits, with three mappings possible for the 5-limit: 139 220 323] (patent val), 139 221 323] (139b), and 139 220 322] (139c).

Using the patent val, it tempers out 1990656/1953125 (valentine comma) and 43046721/41943040 (python comma) in the 5-limit; 126/125, 1029/1024, and 4782969/4705960 in the 7-limit, supporting the 7-limit valentine temperament; 540/539, 1944/1925, 2835/2816, and 12005/11979 in the 11-limit; 364/363, 676/675, 1287/1280, 1701/1690, and 1716/1715 in the 13-limit. Using the alternative 139f val, it tempers out 144/143, 196/195, 351/350, 4096/4095, and 4455/4394 in the 13-limit.

Using the 139df val, it tempers out 225/224, 51200/50421, and 157464/153125 in the 7-limit; 99/98, 176/175, and 15309/15125 in the 11-limit, supporting the 11-limit interpental temperament; 144/143, 648/637, 847/845, 1575/1573, and 3159/3125 in the 13-limit.

Using the 139ce val, it tempers out 3125/3072 (magic comma) and [-42 28 -1 in the 5-limit; 1029/1024, 3125/3087, and 19683/19600 in the 7-limit, supporting the 7-limit trismegistus temperament; 540/539, 1331/1323, and 1815/1792 in the 11-limit; 275/273, 325/324, 847/845, 1287/1280, and 1575/1573 in the 13-limit.

Using the 139bdf val, it tempers out 393216/390625 (würschmidt comma), and 409600000/387420489 in the 5-limit; 245/243, 3125/3087, and 131072/127575 in the 7-limit; 176/175, 1232/1215, and 2560/2541 in the 11-limit; 275/273, 512/507, 625/624, 847/845, and 1625/1617 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 139edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -2.67 +2.18 -1.92 +3.28 +1.20 -3.12 -0.50 -1.36 -3.99 +4.04 +1.94
Relative (%) -31.0 +25.2 -22.2 +38.0 +13.9 -36.1 -5.8 -15.7 -46.2 +46.8 +22.5
Steps
(reduced)
220
(81)
323
(45)
390
(112)
441
(24)
481
(64)
514
(97)
543
(126)
568
(12)
590
(34)
611
(55)
629
(73)

Subsets and supersets

139edo is the 34th prime edo, following 137edo and before 149edo.