73edt: Difference between revisions
No edit summary Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(16 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
'''[[Edt|Division of the third harmonic]] into 73 equal parts''' ( | {{Infobox ET}} | ||
'''[[Edt|Division of the third harmonic]] into 73 equal parts''' (73EDT) is related to [[46edo|46 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 1.5078 cents compressed and the step size is about 26.0542 cents. It is consistent to the [[17-odd-limit|18-integer-limit]]. In comparison, 46edo is only consistent up to the [[13-odd-limit|14-integer-limit]]. | |||
==Harmonics== | |||
{{Harmonics in equal | |||
| steps = 73 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = integer | |||
}} | |||
{{Harmonics in equal | |||
| steps = 73 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = integer | |||
}} | |||
==Intervals== | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | degree | ! | degree | ||
! | cents value | ! | cents value | ||
!hekts | |||
! | corresponding <br>JI intervals | ! | corresponding <br>JI intervals | ||
! | comments | ! | comments | ||
|- | |- | ||
! colspan="3" | 0 | |||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 15: | Line 33: | ||
| | 1 | | | 1 | ||
| | 26.0542 | | | 26.0542 | ||
|17.8082 | |||
| | 66/65 | | | 66/65 | ||
| | | | | | ||
Line 20: | Line 39: | ||
| | 2 | | | 2 | ||
| | 52.1084 | | | 52.1084 | ||
|35.6164 | |||
| | 34/33 | | | 34/33 | ||
| | | | | | ||
Line 25: | Line 45: | ||
| | 3 | | | 3 | ||
| | 78.1625 | | | 78.1625 | ||
|53.4247 | |||
| | 68/65 | | | 68/65 | ||
| | | | | | ||
Line 30: | Line 51: | ||
| | 4 | | | 4 | ||
| | 104.2167 | | | 104.2167 | ||
|71.2329 | |||
| | [[17/16]] | | | [[17/16]] | ||
| | | | | | ||
Line 35: | Line 57: | ||
| | 5 | | | 5 | ||
| | 130.2709 | | | 130.2709 | ||
|89.0411 | |||
| | 55/51 | | | 55/51 | ||
| | | | | | ||
Line 40: | Line 63: | ||
| | 6 | | | 6 | ||
| | 156.3251 | | | 156.3251 | ||
| | | |106.8493 | ||
| | 23/21 | |||
| | | | | | ||
|- | |- | ||
| | 7 | | | 7 | ||
| | 182.3792 | | | 182.3792 | ||
|124.6575 | |||
| | [[10/9]] | | | [[10/9]] | ||
| | | | | | ||
Line 50: | Line 75: | ||
| | 8 | | | 8 | ||
| | 208.4334 | | | 208.4334 | ||
|142.46575 | |||
| | 44/39 | | | 44/39 | ||
| | | | | pseudo-[[9/8]] | ||
|- | |- | ||
| | 9 | | | 9 | ||
| | 234.4876 | | | 234.4876 | ||
| | | |160.274 | ||
| | | | | 63/55 | ||
| | pseudo-[[8/7]] | |||
|- | |- | ||
| | 10 | | | 10 | ||
| | 260.5418 | | | 260.5418 | ||
|178.0822 | |||
| | | | | | ||
| | | | | pseudo-[[7/6]] | ||
|- | |- | ||
| | 11 | | | 11 | ||
| | 286. | | | 286.596 | ||
| | | |195.8904 | ||
| | 13/11 | |||
| | | | | | ||
|- | |- | ||
| | 12 | | | 12 | ||
| | 312.6501 | | | 312.6501 | ||
|213.6986 | |||
| | | | | | ||
| | pseudo-[[6/5]] | | | pseudo-[[6/5]] | ||
Line 75: | Line 105: | ||
| | 13 | | | 13 | ||
| | 338.7043 | | | 338.7043 | ||
| | | |231.50685 | ||
| | 17/14 | |||
| | | | | | ||
|- | |- | ||
| | 14 | | | 14 | ||
| | 364.7585 | | | 364.7585 | ||
|249.3151 | |||
| | 100/81 | | | 100/81 | ||
| | | | | | ||
Line 85: | Line 117: | ||
| | 15 | | | 15 | ||
| | 390.8127 | | | 390.8127 | ||
|267.1233 | |||
| | | | | | ||
| | pseudo-[[5/4]] | | | pseudo-[[5/4]] | ||
Line 90: | Line 123: | ||
| | 16 | | | 16 | ||
| | 416.8668 | | | 416.8668 | ||
|284.9315 | |||
| | [[14/11]] | | | [[14/11]] | ||
| | | | | | ||
|- | |- | ||
| | 17 | | | 17 | ||
| | 442. | | | 442.921 | ||
|302.7397 | |||
| | 31/24 | | | 31/24 | ||
| | | | | | ||
Line 100: | Line 135: | ||
| | 18 | | | 18 | ||
| | 468.9752 | | | 468.9752 | ||
| | | |320.54795 | ||
| | 21/16 | |||
| | | | | | ||
|- | |- | ||
| | 19 | | | 19 | ||
| | 495.0294 | | | 495.0294 | ||
|338.3562 | |||
| | | | | | ||
| | | | | pseudo-[[4/3]] | ||
|- | |- | ||
| | 20 | | | 20 | ||
| | 521.0836 | | | 521.0836 | ||
| | | |356.1644 | ||
| |27/20 | |||
| | | | | | ||
|- | |- | ||
| | 21 | | | 21 | ||
| | 547.1377 | | | 547.1377 | ||
| | | |373.9726 | ||
| | 11/8 | |||
| | | | | | ||
|- | |- | ||
| | 22 | | | 22 | ||
| | 573.1919 | | | 573.1919 | ||
|391.7808 | |||
| | 39/28 | | | 39/28 | ||
| | | | |pseudo-[[7/5]] | ||
|- | |- | ||
| | 23 | | | 23 | ||
| | 599.2461 | | | 599.2461 | ||
|409.589 | |||
| | 140/99 | | | 140/99 | ||
| | | | | | ||
Line 130: | Line 171: | ||
| | 24 | | | 24 | ||
| | 625.3003 | | | 625.3003 | ||
| | | |427.3973 | ||
| | | | |56/39 | ||
| | pseudo-[[10/7]] | |||
|- | |- | ||
| | 25 | | | 25 | ||
| | 651.3545 | | | 651.3545 | ||
| | | |445.2055 | ||
| |16/11 | |||
| | | | | | ||
|- | |- | ||
| | 26 | | | 26 | ||
| | 677.4086 | | | 677.4086 | ||
| | | |463.0137 | ||
| |40/27 | |||
| | | | | | ||
|- | |- | ||
| | 27 | | | 27 | ||
| | 703.4628 | | | 703.4628 | ||
|480.8219 | |||
| | | | | | ||
| | pseudo-[[3/2]] | | | pseudo-[[3/2]] | ||
|- | |- | ||
| | 28 | | | 28 | ||
| | 729. | | | 729.517 | ||
|498.6301 | |||
| | [[32/21]] | | | [[32/21]] | ||
| | | | | | ||
Line 155: | Line 201: | ||
| | 29 | | | 29 | ||
| | 755.5712 | | | 755.5712 | ||
| | | |516.4384 | ||
| | 48/31 | |||
| | | | | | ||
|- | |- | ||
| | 30 | | | 30 | ||
| | 781.6253 | | | 781.6253 | ||
| | | |534.2466 | ||
| | ([[11/7]]) | |||
| | | | | | ||
|- | |- | ||
| | 31 | | | 31 | ||
| | 807.6795 | | | 807.6795 | ||
|552.0548 | |||
| | | | | | ||
| | | | |pseudo-[[8/5]] | ||
|- | |- | ||
| | 32 | | | 32 | ||
| | 833.7337 | | | 833.7337 | ||
| | | |569.863 | ||
| | [[34/21]] | |||
| | | | | | ||
|- | |- | ||
| | 33 | | | 33 | ||
| | 859.7879 | | | 859.7879 | ||
| | | |587.6712 | ||
| | 28/17 | |||
| | | | | | ||
|- | |- | ||
| | 34 | | | 34 | ||
| | 885.8421 | | | 885.8421 | ||
|605.47945 | |||
| | | | | | ||
| | pseudo-[[5/3]] | | | pseudo-[[5/3]] | ||
Line 185: | Line 237: | ||
| | 35 | | | 35 | ||
| | 911.8962 | | | 911.8962 | ||
| | | |623.2877 | ||
| | 22/13 | |||
| | | | | | ||
|- | |- | ||
| | 36 | | | 36 | ||
| | 937.9504 | | | 937.9504 | ||
|641.0959 | |||
| | | | | | ||
| | | | |pseudo-[[12/7]] | ||
|- | |- | ||
| | 37 | | | 37 | ||
| | 964.0046 | | | 964.0046 | ||
| | | |658.9041 | ||
| | | | | 110/63 | ||
| | pseudo-[[7/4]] | |||
|- | |- | ||
| | 38 | | | 38 | ||
| | 990.0588 | | | 990.0588 | ||
| | | |676.7123 | ||
| | | | | 39/22 | ||
| | pseudo-[[16/9]] | |||
|- | |- | ||
| | 39 | | | 39 | ||
| | 1016.1129 | | | 1016.1129 | ||
| | |694.52055 | ||
| | | | |[[9/5]] | ||
| | | |||
|- | |- | ||
| | 40 | | | 40 | ||
| | 1042.1671 | | | 1042.1671 | ||
|712.3288 | |||
| | 42/23 | | | 42/23 | ||
| | | | | | ||
Line 215: | Line 273: | ||
| | 41 | | | 41 | ||
| | 1068.2213 | | | 1068.2213 | ||
| | | |730.137 | ||
| |102/55 | |||
| | | | | | ||
|- | |- | ||
| | 42 | | | 42 | ||
| | 1094.2755 | | | 1094.2755 | ||
| | | |747.9452 | ||
| | 17/8 | |||
| | | | | | ||
|- | |- | ||
| | 43 | | | 43 | ||
| | 1120.3297 | | | 1120.3297 | ||
| | | |765.7534 | ||
| | 65/34 | |||
| | | | | | ||
|- | |- | ||
| | 44 | | | 44 | ||
| | 1146.3838 | | | 1146.3838 | ||
|783.5616 | |||
| | 64/33 | | | 64/33 | ||
| | | | | | ||
|- | |- | ||
| | 45 | | | 45 | ||
| | 1172. | | | 1172.438 | ||
|801.3699 | |||
| | 63/32 | | | 63/32 | ||
| | | | | | ||
Line 240: | Line 303: | ||
| | 46 | | | 46 | ||
| | 1198.4922 | | | 1198.4922 | ||
|819.1781 | |||
| | | | | | ||
| | pseudo-[[octave]] | | | pseudo-[[octave]] | ||
Line 245: | Line 309: | ||
| | 47 | | | 47 | ||
| | 1224.5464 | | | 1224.5464 | ||
| | | |836.9863 | ||
| | 81/40 | |||
| | | | | | ||
|- | |- | ||
| | 48 | | | 48 | ||
| | 1250.6005 | | | 1250.6005 | ||
|854.7945 | |||
| | 35/17 | | | 35/17 | ||
| | | | | | ||
Line 255: | Line 321: | ||
| | 49 | | | 49 | ||
| | 1276.6547 | | | 1276.6547 | ||
|872.6027 | |||
| | 23/11 | | | 23/11 | ||
| | | | | | ||
Line 260: | Line 327: | ||
| | 50 | | | 50 | ||
| | 1302.7089 | | | 1302.7089 | ||
| | | |890.411 | ||
| | 17/8 | |||
| | | | | | ||
|- | |- | ||
| | 51 | | | 51 | ||
| | 1328.7631 | | | 1328.7631 | ||
|908.2192 | |||
| | [[14/13|28/13]] | | | [[14/13|28/13]] | ||
| | | | | | ||
Line 270: | Line 339: | ||
| | 52 | | | 52 | ||
| | 1354.8173 | | | 1354.8173 | ||
| | | |926.0274 | ||
| | 24/11 | |||
| | | | | | ||
|- | |- | ||
| | 53 | | | 53 | ||
| | 1380.8714 | | | 1380.8714 | ||
| | | |943.8356 | ||
| | 20/9 | |||
| | | | | | ||
|- | |- | ||
| | 54 | | | 54 | ||
| | 1406.9256 | | | 1406.9256 | ||
| | | |961.6438 | ||
| | 9/4 | |||
| | | | | | ||
|- | |- | ||
| | 55 | | | 55 | ||
| | 1432.9798 | | | 1432.9798 | ||
| | | |979.45205 | ||
| | 16/7 | |||
| | | | | | ||
|- | |- | ||
| | 56 | | | 56 | ||
| | 1459. | | | 1459.034 | ||
| | |997.2603 | ||
| | | | | | ||
| |pseudo-7/3 | |||
|- | |- | ||
| | 57 | | | 57 | ||
| | 1485.0882 | | | 1485.0882 | ||
| | | |1015.0685 | ||
| | 26/11 | |||
| | | | | | ||
|- | |- | ||
| | 58 | | | 58 | ||
| | 1511.1423 | | | 1511.1423 | ||
|1032.8767 | |||
| | | | | | ||
| | pseudo-[[12/5]] | | | pseudo-[[12/5]] | ||
Line 305: | Line 381: | ||
| | 59 | | | 59 | ||
| | 1537.1965 | | | 1537.1965 | ||
| | | |1050.6849 | ||
| | 17/7 | |||
| | | | | | ||
|- | |- | ||
| | 60 | | | 60 | ||
| | 1563.2507 | | | 1563.2507 | ||
| | | |1068.49315 | ||
| | 42/17 | |||
| | | | | | ||
|- | |- | ||
| | 61 | | | 61 | ||
| | 1589.3049 | | | 1589.3049 | ||
|1086.3014 | |||
| | | | | | ||
| | pseudo-[[5/2]] | | | pseudo-[[5/2]] | ||
|- | |- | ||
| | 62 | | | 62 | ||
| | 1615. | | | 1615.359 | ||
| | | |1104.1096 | ||
| | 28/11 | |||
| | | | | | ||
|- | |- | ||
| | 63 | | | 63 | ||
| | 1641.4132 | | | 1641.4132 | ||
|1121.9178 | |||
| | | | | | ||
| | | | |pseudo-18/7 | ||
|- | |- | ||
| | 64 | | | 64 | ||
| | 1667.4674 | | | 1667.4674 | ||
| | | |1139.726 | ||
| | 21/8 | |||
| | | | | | ||
|- | |- | ||
| | 65 | | | 65 | ||
| | 1693.5216 | | | 1693.5216 | ||
| | | |1157.53425 | ||
| | 8/3 | |||
| | | | | | ||
|- | |- | ||
| | 66 | | | 66 | ||
| | 1719.5758 | | | 1719.5758 | ||
|1175.3425 | |||
| | [[27/20|27/10]] | | | [[27/20|27/10]] | ||
| | | | | | ||
Line 345: | Line 429: | ||
| | 67 | | | 67 | ||
| | 1745.6299 | | | 1745.6299 | ||
| | | |1193.1507 | ||
| | 11/4 | |||
| | | | | | ||
|- | |- | ||
| | 68 | | | 68 | ||
| | 1771.6841 | | | 1771.6841 | ||
| | | |1210.9589 | ||
| | 39/14 | |||
| | | | | | ||
|- | |- | ||
| | 69 | | | 69 | ||
| | 1797.7383 | | | 1797.7383 | ||
|1228.7671 | |||
| | [[24/17|48/17]] | | | [[24/17|48/17]] | ||
| | | | | | ||
Line 360: | Line 447: | ||
| | 70 | | | 70 | ||
| | 1823.7925 | | | 1823.7925 | ||
| | | |1246.5753 | ||
| |112/39 | |||
| | | | | | ||
|- | |- | ||
| | 71 | | | 71 | ||
| | 1849.8466 | | | 1849.8466 | ||
|1264.3836 | |||
| | 99/34 | | | 99/34 | ||
| | | | | | ||
Line 370: | Line 459: | ||
| | 72 | | | 72 | ||
| | 1875.9008 | | | 1875.9008 | ||
|1282.1918 | |||
| | 65/22 | | | 65/22 | ||
| | | | | | ||
Line 375: | Line 465: | ||
| | 73 | | | 73 | ||
| | 1901.9550 | | | 1901.9550 | ||
|1300 | |||
| | '''exact [[3/1]]''' | | | '''exact [[3/1]]''' | ||
| | [[3/2|just perfect fifth]] plus an octave | | | [[3/2|just perfect fifth]] plus an octave | ||
|} | |} | ||
[[ | ==Related regular temperaments== | ||
[[ | 73edt is also related to the microtemperament which tempers out |73 -153 73> in the 5-limit, which is supported by 46, 783, 829, 1612, 2395, 3128, and 4007 EDOs. | ||
===5-limit 46&783=== | |||
Comma: |73 -153 73> | |||
POTE generator: ~|21 -44 21> = 26.0543 | |||
Mapping: [<1 0 -1|, <0 73 153|] | |||
EDOs: {{EDOs|46, 737, 783, 829, 875, 1612, 2395, 2441, 3128, 4007, 5573, 6402}} | |||
===7-limit 46&783=== | |||
Commas: 4375/4374, |-92 20 3 19> | |||
POTE generator: ~335544320/330812181 = 26.0533 | |||
Mapping: [<1 0 -1 5|, <0 73 153 -101|] | |||
EDOs: {{EDOs|46, 691, 737, 783, 829, 1520, 1612}} | |||
===11-limit 46&783=== | |||
Commas: 4375/4374, 806736/805255, 2097152/2096325 | |||
POTE generator: ~3072/3025 = 26.0542 | |||
Mapping: [<1 0 -1 5 6|, <0 73 153 -101 -117|] | |||
EDOs: {{EDOs|46, 737, 783, 829, 875}} | |||
== Music == | |||
; [[Ray Perlner]] | |||
* [https://www.youtube.com/watch?v=N7inULohKQI ''Fugue for that other kind of string quartet in 73EDT BPS<nowiki>[</nowiki>9<nowiki>]</nowiki> (Sensi Extension) in LsLssLsLs "Moll I"''] (2024) |
Latest revision as of 19:23, 1 August 2025
← 72edt | 73edt | 74edt → |
Division of the third harmonic into 73 equal parts (73EDT) is related to 46 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 1.5078 cents compressed and the step size is about 26.0542 cents. It is consistent to the 18-integer-limit. In comparison, 46edo is only consistent up to the 14-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.5 | +0.0 | -3.0 | +1.5 | -1.5 | -7.8 | -4.5 | +0.0 | -0.0 | -8.7 | -3.0 |
Relative (%) | -5.8 | +0.0 | -11.6 | +5.7 | -5.8 | -30.1 | -17.4 | +0.0 | -0.1 | -33.4 | -11.6 | |
Steps (reduced) |
46 (46) |
73 (0) |
92 (19) |
107 (34) |
119 (46) |
129 (56) |
138 (65) |
146 (0) |
153 (7) |
159 (13) |
165 (19) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | -9.3 | +1.5 | -6.0 | -6.8 | -1.5 | +9.1 | -1.5 | -7.8 | -10.2 | -9.0 |
Relative (%) | -43.4 | -35.9 | +5.7 | -23.1 | -26.0 | -5.8 | +34.9 | -5.9 | -30.1 | -39.2 | -34.6 | |
Steps (reduced) |
170 (24) |
175 (29) |
180 (34) |
184 (38) |
188 (42) |
192 (46) |
196 (50) |
199 (53) |
202 (56) |
205 (59) |
208 (62) |
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 26.0542 | 17.8082 | 66/65 | |
2 | 52.1084 | 35.6164 | 34/33 | |
3 | 78.1625 | 53.4247 | 68/65 | |
4 | 104.2167 | 71.2329 | 17/16 | |
5 | 130.2709 | 89.0411 | 55/51 | |
6 | 156.3251 | 106.8493 | 23/21 | |
7 | 182.3792 | 124.6575 | 10/9 | |
8 | 208.4334 | 142.46575 | 44/39 | pseudo-9/8 |
9 | 234.4876 | 160.274 | 63/55 | pseudo-8/7 |
10 | 260.5418 | 178.0822 | pseudo-7/6 | |
11 | 286.596 | 195.8904 | 13/11 | |
12 | 312.6501 | 213.6986 | pseudo-6/5 | |
13 | 338.7043 | 231.50685 | 17/14 | |
14 | 364.7585 | 249.3151 | 100/81 | |
15 | 390.8127 | 267.1233 | pseudo-5/4 | |
16 | 416.8668 | 284.9315 | 14/11 | |
17 | 442.921 | 302.7397 | 31/24 | |
18 | 468.9752 | 320.54795 | 21/16 | |
19 | 495.0294 | 338.3562 | pseudo-4/3 | |
20 | 521.0836 | 356.1644 | 27/20 | |
21 | 547.1377 | 373.9726 | 11/8 | |
22 | 573.1919 | 391.7808 | 39/28 | pseudo-7/5 |
23 | 599.2461 | 409.589 | 140/99 | |
24 | 625.3003 | 427.3973 | 56/39 | pseudo-10/7 |
25 | 651.3545 | 445.2055 | 16/11 | |
26 | 677.4086 | 463.0137 | 40/27 | |
27 | 703.4628 | 480.8219 | pseudo-3/2 | |
28 | 729.517 | 498.6301 | 32/21 | |
29 | 755.5712 | 516.4384 | 48/31 | |
30 | 781.6253 | 534.2466 | (11/7) | |
31 | 807.6795 | 552.0548 | pseudo-8/5 | |
32 | 833.7337 | 569.863 | 34/21 | |
33 | 859.7879 | 587.6712 | 28/17 | |
34 | 885.8421 | 605.47945 | pseudo-5/3 | |
35 | 911.8962 | 623.2877 | 22/13 | |
36 | 937.9504 | 641.0959 | pseudo-12/7 | |
37 | 964.0046 | 658.9041 | 110/63 | pseudo-7/4 |
38 | 990.0588 | 676.7123 | 39/22 | pseudo-16/9 |
39 | 1016.1129 | 694.52055 | 9/5 | |
40 | 1042.1671 | 712.3288 | 42/23 | |
41 | 1068.2213 | 730.137 | 102/55 | |
42 | 1094.2755 | 747.9452 | 17/8 | |
43 | 1120.3297 | 765.7534 | 65/34 | |
44 | 1146.3838 | 783.5616 | 64/33 | |
45 | 1172.438 | 801.3699 | 63/32 | |
46 | 1198.4922 | 819.1781 | pseudo-octave | |
47 | 1224.5464 | 836.9863 | 81/40 | |
48 | 1250.6005 | 854.7945 | 35/17 | |
49 | 1276.6547 | 872.6027 | 23/11 | |
50 | 1302.7089 | 890.411 | 17/8 | |
51 | 1328.7631 | 908.2192 | 28/13 | |
52 | 1354.8173 | 926.0274 | 24/11 | |
53 | 1380.8714 | 943.8356 | 20/9 | |
54 | 1406.9256 | 961.6438 | 9/4 | |
55 | 1432.9798 | 979.45205 | 16/7 | |
56 | 1459.034 | 997.2603 | pseudo-7/3 | |
57 | 1485.0882 | 1015.0685 | 26/11 | |
58 | 1511.1423 | 1032.8767 | pseudo-12/5 | |
59 | 1537.1965 | 1050.6849 | 17/7 | |
60 | 1563.2507 | 1068.49315 | 42/17 | |
61 | 1589.3049 | 1086.3014 | pseudo-5/2 | |
62 | 1615.359 | 1104.1096 | 28/11 | |
63 | 1641.4132 | 1121.9178 | pseudo-18/7 | |
64 | 1667.4674 | 1139.726 | 21/8 | |
65 | 1693.5216 | 1157.53425 | 8/3 | |
66 | 1719.5758 | 1175.3425 | 27/10 | |
67 | 1745.6299 | 1193.1507 | 11/4 | |
68 | 1771.6841 | 1210.9589 | 39/14 | |
69 | 1797.7383 | 1228.7671 | 48/17 | |
70 | 1823.7925 | 1246.5753 | 112/39 | |
71 | 1849.8466 | 1264.3836 | 99/34 | |
72 | 1875.9008 | 1282.1918 | 65/22 | |
73 | 1901.9550 | 1300 | exact 3/1 | just perfect fifth plus an octave |
Related regular temperaments
73edt is also related to the microtemperament which tempers out |73 -153 73> in the 5-limit, which is supported by 46, 783, 829, 1612, 2395, 3128, and 4007 EDOs.
5-limit 46&783
Comma: |73 -153 73>
POTE generator: ~|21 -44 21> = 26.0543
Mapping: [<1 0 -1|, <0 73 153|]
EDOs: 46, 737, 783, 829, 875, 1612, 2395, 2441, 3128, 4007, 5573, 6402
7-limit 46&783
Commas: 4375/4374, |-92 20 3 19>
POTE generator: ~335544320/330812181 = 26.0533
Mapping: [<1 0 -1 5|, <0 73 153 -101|]
EDOs: 46, 691, 737, 783, 829, 1520, 1612
11-limit 46&783
Commas: 4375/4374, 806736/805255, 2097152/2096325
POTE generator: ~3072/3025 = 26.0542
Mapping: [<1 0 -1 5 6|, <0 73 153 -101 -117|]