71edt: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(15 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
'''[[Edt| | {{Infobox ET}} | ||
'''71EDT''' is the [[Edt|equal division of the third harmonic]] into 71 parts of 26.7881 [[cent|cents]] each, corresponding to 44.7960 [[edo]] (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val). | |||
71EDT is the 13th [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak EDT]]. | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 71 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 71 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} | |||
== Intervals == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Degree | ||
! | ! [[Cent]]s | ||
! | ! [[Hekt]]s | ||
! | ! Corresponding<br />JI intervals | ||
! Comments | |||
|- | |- | ||
! colspan="3" | 0 | |||
| '''exact [[1/1]]''' | |||
| | |||
|- | |- | ||
| 1 | |||
| 26.7881 | |||
| | 66/65 | | 18.3099 | ||
| 66/65 | |||
| | |||
|- | |- | ||
| 2 | |||
| 53.5762 | |||
| | 65/63 | | 36.6197 | ||
| 65/63 | |||
| | |||
|- | |- | ||
| 3 | |||
| 80.3643 | |||
| | [[22/21]] | | 54.9296 | ||
| [[22/21]] | |||
| | |||
|- | |- | ||
| 4 | |||
| 107.1524 | |||
| | 117/110 | | 73.2394 | ||
| 117/110 | |||
| | |||
|- | |- | ||
| 5 | |||
| 133.9405 | |||
| | [[27/25]] | | 91.5493 | ||
| [[27/25]] | |||
| | |||
|- | |- | ||
| 6 | |||
| 160.7286 | |||
| | 169/154 | | 109.85915 | ||
| 169/154 | |||
| | |||
|- | |- | ||
| 7 | |||
| 187.5167 | |||
| | 39/35 | | 128.169 | ||
| 39/35 | |||
| | |||
|- | |- | ||
| 8 | |||
| 214.3048 | |||
| | 147/130, 198/175 | | 146.4789 | ||
| 147/130, 198/175 | |||
| | |||
|- | |- | ||
| 9 | |||
| 241.0929 | |||
| | 169/147 | | 164.7887 | ||
| 169/147 | |||
| | |||
|- | |- | ||
| 10 | |||
| 267.8810 | |||
| | [[7/6]] | | 183.0986 | ||
| [[7/6]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 294.6691 | |||
| | 77/65 | | 201.40845 | ||
| 77/65 | |||
| | |||
|- | |- | ||
| 12 | |||
| 321.4572 | |||
| | | | 219.7183 | ||
| 65/54 | |||
| | |||
|- | |- | ||
| 13 | |||
| 348.2453 | |||
| | [[11/9]] | | 238.0282 | ||
| [[11/9]] | |||
| | |||
|- | |- | ||
| 14 | |||
| 375.0334 | |||
| | 273/220 | | 256.338 | ||
| 273/220 | |||
| | |||
|- | |- | ||
| 15 | |||
| 401.8215 | |||
| | 63/50 | | 274.6479 | ||
| 63/50 | |||
| | |||
|- | |- | ||
| 16 | |||
| 428.6096 | |||
| | | | 292.95775 | ||
| 169/132 | |||
| | |||
|- | |- | ||
| 17 | |||
| 455.3977 | |||
| | [[13/10]] | | 311.2676 | ||
| [[13/10]] | |||
| | |||
|- | |- | ||
| 18 | |||
| 482.1858 | |||
| | 33/25 | | 329.5775 | ||
| 33/25 | |||
| | |||
|- | |- | ||
| 19 | |||
| 508.9739 | |||
| | | | 347.8873 | ||
| 169/126 | |||
| | |||
|- | |- | ||
| 20 | |||
| 535.7620 | |||
| | [[15/11]] | | 366.1972 | ||
| [[15/11]] | |||
| | |||
|- | |- | ||
| 21 | |||
| 562.5501 | |||
| | [[18/13]] | | 384.507 | ||
| [[18/13]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 589.3382 | |||
| | | | 402.8169 | ||
| ([[45/32]]) | |||
| | |||
|- | |- | ||
| 23 | |||
| 616.1263 | |||
| | [[10/7]] | | 421.1268 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 642.9144 | |||
| | 132/91 | | 439.4366 | ||
| 132/91 | |||
| | |||
|- | |- | ||
| 25 | |||
| 669.7025 | |||
| | | | 457.7465 | ||
| 22/15 | |||
| | |||
|- | |- | ||
| 26 | |||
| 696.4906 | |||
| | 486/325, 220/147 | | 476.0563 | ||
| | | 486/325, 220/147 | ||
| pseudo-[[3/2]] | |||
|- | |- | ||
| 27 | |||
| 723.2787 | |||
| | | | 494.3662 | ||
| 50/33 | |||
| | |||
|- | |- | ||
| 28 | |||
| 750.0668 | |||
| | 54/35 | | 512.6761 | ||
| 54/35 | |||
| | |||
|- | |- | ||
| 29 | |||
| 776.8549 | |||
| | | | 530.9859 | ||
| 264/169 | |||
| | |||
|- | |- | ||
| 30 | |||
| 803.643 | |||
| | 35/22 | | 549.2958 | ||
| 35/22 | |||
| | |||
|- | |- | ||
| 31 | |||
| 830.4311 | |||
| | [[21/13]] | | 567.6056 | ||
| [[21/13]] | |||
| | |||
|- | |- | ||
| 32 | |||
| 857.2192 | |||
| | | | 585.9155 | ||
| 18/11 | |||
| | |||
|- | |- | ||
| 33 | |||
| 884.0073 | |||
| | [[5/3]] | | 604.22535 | ||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 34 | |||
| 910.7954 | |||
| | [[22/13]] | | 622.5352 | ||
| [[22/13]] | |||
| | |||
|- | |- | ||
| 35 | |||
| 937.5835 | |||
| | | | 640.8451 | ||
| 12/7 | |||
| | |||
|- | |- | ||
| 36 | |||
| 964.3715 | |||
| | | | 659.1549 | ||
| 7/4 | |||
| | |||
|- | |- | ||
| 37 | |||
| 991.1596 | |||
| | 39/22 | | 677.4648 | ||
| 39/22 | |||
| | |||
|- | |- | ||
| 38 | |||
| 1017.9477 | |||
| | [[9/5]] | | 695.77465 | ||
| [[9/5]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 1044.7358 | |||
| | | | 714.0845 | ||
| 11/6 | |||
| | |||
|- | |- | ||
| 40 | |||
| 1071.5239 | |||
| | [[13/7]] | | 732.3944 | ||
| [[13/7]] | |||
| | |||
|- | |- | ||
| 41 | |||
| 1098.312 | |||
| | 66/35 | | 750.7042 | ||
| 66/35 | |||
| | |||
|- | |- | ||
| 42 | |||
| 1125.1001 | |||
| | | | 769.0141 | ||
| 21/11 | |||
| | |||
|- | |- | ||
| 43 | |||
| 1151.8882 | |||
| | 35/18 | | 787.3239 | ||
| 35/18 | |||
| | |||
|- | |- | ||
| 44 | |||
| 1178.6763 | |||
| | | | 805.6338 | ||
| 22/13 | |||
| | |||
|- | |- | ||
| 45 | |||
| 1205.4644 | |||
| | 441/220, 325/162 | | 823.9437 | ||
| | | 441/220, 325/162 | ||
| pseudo-[[octave]] | |||
|- | |- | ||
| 46 | |||
| 1232.2525 | |||
| | | | 842.2535 | ||
| 45/22 | |||
| | |||
|- | |- | ||
| 47 | |||
| 1259.0406 | |||
| | 91/44 | | 860.5634 | ||
| 91/44 | |||
| | |||
|- | |- | ||
| 48 | |||
| 1285.8287 | |||
| | [[21/20|21/10]] | | 878.8732 | ||
| [[21/20|21/10]] | |||
| | |||
|- | |- | ||
| 49 | |||
| 1312.6168 | |||
| | | | 897.1831 | ||
| ([[16/15|32/15]]) | |||
| | |||
|- | |- | ||
| 50 | |||
| 1339.4049 | |||
| | [[13/6]] | | 915.493 | ||
| [[13/6]] | |||
| | |||
|- | |- | ||
| 51 | |||
| 1366.193 | |||
| | [[11/5]] | | 933.8028 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 52 | |||
| 1392.9811 | |||
| | | | 952.1127 | ||
| 378/169 | |||
| | |||
|- | |- | ||
| 53 | |||
| 1419.7692 | |||
| | 25/11 | | 970.4225 | ||
| [[25/11]] | |||
| | |||
|- | |- | ||
| 54 | |||
| 1446.5573 | |||
| | [[15/13|30/13]] | | 988.7324 | ||
| [[15/13|30/13]] | |||
| | |||
|- | |- | ||
| 55 | |||
| 1473.3454 | |||
| | | | 1007.04225 | ||
| 396/169 | |||
| | |||
|- | |- | ||
| 56 | |||
| 1500.1335 | |||
| | 50/21 | | 1025.3521 | ||
| 50/21 | |||
| | |||
|- | |- | ||
| 57 | |||
| 1526.9216 | |||
| | 220/91 | | 1043.662 | ||
| 220/91 | |||
| | |||
|- | |- | ||
| 58 | |||
| 1553.7097 | |||
| | [[27/22|27/11]] | | 1061.9718 | ||
| [[27/22|27/11]] | |||
| | |||
|- | |- | ||
| 59 | |||
| 1580.4978 | |||
| | | | 1080.2817 | ||
| 162/65 | |||
| | |||
|- | |- | ||
| 60 | |||
| 1607.2859 | |||
| | 195/77 | | 1098.59155 | ||
| 195/77 | |||
| | |||
|- | |- | ||
| 61 | |||
| 1634.0740 | |||
| | [[9/7|18/7]] | | 1161.9014 | ||
| [[9/7|18/7]] | |||
| | |||
|- | |- | ||
| 62 | |||
| 1660.8621 | |||
| | 441/169 | | 1135.2113 | ||
| 441/169 | |||
| | |||
|- | |- | ||
| 63 | |||
| 1687.6502 | |||
| | 175/66, 130/49 | | 1153.5211 | ||
| 175/66, 130/49 | |||
| | |||
|- | |- | ||
| 64 | |||
| 1714.4383 | |||
| | 35/13, 132/49 | | 1171.831 | ||
| 35/13, 132/49 | |||
| | |||
|- | |- | ||
| 65 | |||
| 1741.2264 | |||
| | 462/169 | | 1190.14085 | ||
| 462/169 | |||
| | |||
|- | |- | ||
| 66 | |||
| 1768.0145 | |||
| | [[25/18|25/9]] | | 1208.4507 | ||
| [[25/18|25/9]] | |||
| | |||
|- | |- | ||
| 67 | |||
| 1794.8026 | |||
| | 110/39 | | 1226.7606 | ||
| 110/39 | |||
| | |||
|- | |- | ||
| 68 | |||
| 1821.5907 | |||
| | 63/22 | | 1245.0704 | ||
| 63/22 | |||
| | |||
|- | |- | ||
| 69 | |||
| 1848.3788 | |||
| | 189/65 | | 1263.3803 | ||
| 189/65 | |||
| | |||
|- | |- | ||
| 70 | |||
| 1875.1669 | |||
| | 65/22 | | 1281.6901 | ||
| 65/22 | |||
| | |||
|- | |- | ||
| 71 | |||
| 1901.9550 | |||
| | '''exact [[3/1]]''' | | 1300 | ||
| '''exact [[3/1]]''' | |||
| [[3/2|just perfect fifth]] plus an octave | |||
|} | |} | ||
Latest revision as of 19:23, 1 August 2025
← 70edt | 71edt | 72edt → |
71EDT is the equal division of the third harmonic into 71 parts of 26.7881 cents each, corresponding to 44.7960 edo (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by 45edo (45ef val), 179edo (179ef val), 224edo, 269edo (269ce val), and 403edo (403def val).
71EDT is the 13th no-twos zeta peak EDT.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.5 | +0.0 | -0.4 | +6.5 | +0.8 | +6.3 | -2.7 | -7.8 | +9.7 | +10.2 | +1.9 |
Relative (%) | +20.4 | +0.0 | -1.3 | +24.2 | +3.1 | +23.5 | -10.2 | -29.0 | +36.2 | +38.2 | +7.2 | |
Steps (reduced) |
45 (45) |
71 (0) |
104 (33) |
126 (55) |
155 (13) |
166 (24) |
183 (41) |
190 (48) |
203 (61) |
218 (5) |
222 (9) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.7 | +0.1 | -2.0 | +4.7 | +11.0 | +12.9 | +8.7 | +7.1 | -13.0 | -7.5 | -10.3 |
Relative (%) | -36.3 | +0.3 | -7.5 | +17.7 | +41.2 | +48.1 | +32.7 | +26.3 | -48.4 | -27.9 | -38.4 | |
Steps (reduced) |
233 (20) |
240 (27) |
243 (30) |
249 (36) |
257 (44) |
264 (51) |
266 (53) |
272 (59) |
275 (62) |
277 (64) |
282 (69) |
Intervals
Degree | Cents | Hekts | Corresponding JI intervals |
Comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 26.7881 | 18.3099 | 66/65 | |
2 | 53.5762 | 36.6197 | 65/63 | |
3 | 80.3643 | 54.9296 | 22/21 | |
4 | 107.1524 | 73.2394 | 117/110 | |
5 | 133.9405 | 91.5493 | 27/25 | |
6 | 160.7286 | 109.85915 | 169/154 | |
7 | 187.5167 | 128.169 | 39/35 | |
8 | 214.3048 | 146.4789 | 147/130, 198/175 | |
9 | 241.0929 | 164.7887 | 169/147 | |
10 | 267.8810 | 183.0986 | 7/6 | |
11 | 294.6691 | 201.40845 | 77/65 | |
12 | 321.4572 | 219.7183 | 65/54 | |
13 | 348.2453 | 238.0282 | 11/9 | |
14 | 375.0334 | 256.338 | 273/220 | |
15 | 401.8215 | 274.6479 | 63/50 | |
16 | 428.6096 | 292.95775 | 169/132 | |
17 | 455.3977 | 311.2676 | 13/10 | |
18 | 482.1858 | 329.5775 | 33/25 | |
19 | 508.9739 | 347.8873 | 169/126 | |
20 | 535.7620 | 366.1972 | 15/11 | |
21 | 562.5501 | 384.507 | 18/13 | |
22 | 589.3382 | 402.8169 | (45/32) | |
23 | 616.1263 | 421.1268 | 10/7 | |
24 | 642.9144 | 439.4366 | 132/91 | |
25 | 669.7025 | 457.7465 | 22/15 | |
26 | 696.4906 | 476.0563 | 486/325, 220/147 | pseudo-3/2 |
27 | 723.2787 | 494.3662 | 50/33 | |
28 | 750.0668 | 512.6761 | 54/35 | |
29 | 776.8549 | 530.9859 | 264/169 | |
30 | 803.643 | 549.2958 | 35/22 | |
31 | 830.4311 | 567.6056 | 21/13 | |
32 | 857.2192 | 585.9155 | 18/11 | |
33 | 884.0073 | 604.22535 | 5/3 | |
34 | 910.7954 | 622.5352 | 22/13 | |
35 | 937.5835 | 640.8451 | 12/7 | |
36 | 964.3715 | 659.1549 | 7/4 | |
37 | 991.1596 | 677.4648 | 39/22 | |
38 | 1017.9477 | 695.77465 | 9/5 | |
39 | 1044.7358 | 714.0845 | 11/6 | |
40 | 1071.5239 | 732.3944 | 13/7 | |
41 | 1098.312 | 750.7042 | 66/35 | |
42 | 1125.1001 | 769.0141 | 21/11 | |
43 | 1151.8882 | 787.3239 | 35/18 | |
44 | 1178.6763 | 805.6338 | 22/13 | |
45 | 1205.4644 | 823.9437 | 441/220, 325/162 | pseudo-octave |
46 | 1232.2525 | 842.2535 | 45/22 | |
47 | 1259.0406 | 860.5634 | 91/44 | |
48 | 1285.8287 | 878.8732 | 21/10 | |
49 | 1312.6168 | 897.1831 | (32/15) | |
50 | 1339.4049 | 915.493 | 13/6 | |
51 | 1366.193 | 933.8028 | 11/5 | |
52 | 1392.9811 | 952.1127 | 378/169 | |
53 | 1419.7692 | 970.4225 | 25/11 | |
54 | 1446.5573 | 988.7324 | 30/13 | |
55 | 1473.3454 | 1007.04225 | 396/169 | |
56 | 1500.1335 | 1025.3521 | 50/21 | |
57 | 1526.9216 | 1043.662 | 220/91 | |
58 | 1553.7097 | 1061.9718 | 27/11 | |
59 | 1580.4978 | 1080.2817 | 162/65 | |
60 | 1607.2859 | 1098.59155 | 195/77 | |
61 | 1634.0740 | 1161.9014 | 18/7 | |
62 | 1660.8621 | 1135.2113 | 441/169 | |
63 | 1687.6502 | 1153.5211 | 175/66, 130/49 | |
64 | 1714.4383 | 1171.831 | 35/13, 132/49 | |
65 | 1741.2264 | 1190.14085 | 462/169 | |
66 | 1768.0145 | 1208.4507 | 25/9 | |
67 | 1794.8026 | 1226.7606 | 110/39 | |
68 | 1821.5907 | 1245.0704 | 63/22 | |
69 | 1848.3788 | 1263.3803 | 189/65 | |
70 | 1875.1669 | 1281.6901 | 65/22 | |
71 | 1901.9550 | 1300 | exact 3/1 | just perfect fifth plus an octave |