Tetrachord: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 87401237 - Original comment: **
m +interwiki
 
(34 intermediate revisions by 16 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Interwiki
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| en = Tetrachord
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-09-06 14:29:42 UTC</tt>.<br>
| ja = テトラコード
: The original revision id was <tt>87401237</tt>.<br>
}}
: The revision comment was: <tt></tt><br>
{{Distinguish| Tetrad }}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
{{Wikipedia}}
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Related pages: [[22edo tetrachords]], [[17edo tetrachords]], [[Tricesimoprimal Tetrachordal Tesseract]]


A '''tetrachord''' is a four-note segment of a [[scale]] or tone row, usually spanning the interval of a [[perfect fourth]] (possibly tempered). It can be formed by dividing the perfect fourth into three subintervals by the interposition of two additional notes.


The word "tetrachord" usually refers to the interval of a perfect fourth (just or not) divided into three subintervals by the interposition of two additional notes.
Tetrachords are fundamental to many musical traditions around the world. [[John Chalmers]], in [https://eamusic.dartmouth.edu/~larry/published_articles/divisions_of_the_tetrachord/index.html ''Divisions of the Tetrachord''], tells us:


John Chalmers, in [[http://eamusic.dartmouth.edu/%7Elarry/published_articles/divisions_of_the_tetrachord/index.html|Divisions of the Tetrachord]], tells us:
<blockquote>
Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Mediterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the [[Arabic, Turkish, Persian|Near East]], the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.
</blockquote>


//Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Medditterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the Near East, the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.//
== Ancient Greek genera ==
The ancient Greeks distinguished between three primary [[genera]] depending on the size of the largest interval, the ''characteristic interval'' (CI): the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.


; hyperenharmonic genus: The CI is larger than 425 cents.
; enharmonic genus: The CI approximates a major third, falling between 425 cents and 375 cents.
; chromatic genus: The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.
; diatonic genus: The CI (and the other intervals) approximates a "[[tone]]", measuring less than 250 cents.


=Ancient Greek Genera=  
=== Ptolemy's catalog ===
In the ''Harmonics'', Ptolemy catalogs several historical tetrachords and attributes them to particular theorists.


The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval, or CI-- the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.
{| class="wikitable"
|-
|+ Archytas's Genera
|-
| 28/27, 36/35, 5/4
| 63 + 49 + 386
| enharmonic
|-
| 28/27, 243/224, 32/27
| 63 + 141 + 294
| chromatic
|-
| 28/27, 8/7, 9/8
| 63 + 231 + 204
| diatonic
|}


===hyperenharmonic genus===
{| class="wikitable"
The CI is larger than 425 cents.
|-
|+ Eratosthenes's Genera
|-
| 40/39, 39/38, 19/15
| 44 + 45 + 409
| enharmonic
|-
| 20/19, 19/18, 6/5
| 89 + 94 + 316
| chromatic
|-
| 256/243, 9/8, 9/8
| 90 + 204 + 204
| diatonic
|}


===enharmonic genus===
{| class="wikitable"
The CI approximates a major third, falling between 425 cents and 375 cents.
|-
|+ Didymos's Genera
|-
| | 32/31, 31/30, 5/4
| | 55 + 57 + 386
| | enharmonic
|-
| | 16/15, 25/24, 6/5
| | 112 + 74 + 316
| | chromatic
|-
| | 16/15, 10/9, 9/8
| | 112 + 182 + 204
| | diatonic
|}


===chromatic genus===
{| class="wikitable"
The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.
|-
|+ Ptolemy's Tunings
|-
| 46/45, 24/23, 5/4
| 38 + 75 + 386
| enharmonic
|-
| 28/27, 15/14, 6/5
| 63 + 119 + 316
| soft chromatic
|-
| 22/21, 12/11, 7/6
| 81 + 151 + 267
| intense chromatic
|-
| 21/20, 10/9, 8/7
| 85 + 182 + 231
| soft diatonic
|-
| 28/27, 8/7, 9/8
| 63 + 231 + 204
| diatonon toniaion
|-
| 256/243, 9/8, 9/8
| 90 + 204 + 204
| diatonon ditoniaion
|-
| 16/15, 9/8, 10/9
| 112 + 182 + 204
| intense diatonic
|-
| 12/11, 11/10, 10/9
| 151 + 165 + 182
| equable diatonic
|}


===diatonic genus===  
=== Superparticular intervals ===
The CI (and the other intervals) approximates a "tone," measuring less than 250 cents.
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are [[superparticular]].


== Jins/ajnas (tetrachords in middle-eastern music) ==
{{Main|Jins}}
A concept similar to the tetrachord exists in [[Arabic, Turkish, Persian music|Arabic music theory]]: a [[jins]] (pl. ajnas) is a set of three, four or five stepwise pitches used to build an Arabic [[maqam]].


==Ptolomy's Catalog==  
== Generalized tetrachords ==
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals ''a'' &amp; ''b'', &amp; then write our generalized tetrachord like this:


In the //Harmonics//, Ptolomy catalogs several historical tetrachords and attributes them to particular theorists.
1/1, a, b, 4/3


||||||~ Archytas's Genera ||
We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:
|| 28/27, 36/35, 5/4 || 63 + 49 + 386 || enharmonic ||
|| 28/27, 243/224, 32/27 || 63 + 141 + 294 || chromatic ||
|| 28/27, 8/7, 9/8 || 63 + 231 + 204 || diatonic ||


||||||~ Eratosthenes's Genera ||
1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
|| 40/39, 39/38, 19/15 || 44 + 45 + 409 || enharmonic ||
|| 20/19, 19/18, 6/5 || 89 + 94 + 316 || chromatic ||
|| 256/243, 9/8, 9/8 || 90 + 204 + 204 || diatonic ||


||||||~ Didymos's Genera ||
Between 3/2 and 4/3, we have 9/8, so another way to write it would be:
|| 32/31, 31/30, 5/4 || 55 + 57 + 386 || enharmonic ||
|| 16/15, 25/24, 6/5 || 112 + 74 + 316 || chromatic ||
|| 16/15, 10/9, 9/8 || 112 + 182 + 204 || diatonic ||


||||||~ Ptolemy's Tunings ||
[tetrachord], 9/8, [tetrachord]
|| 46/45, 24/23, 5/4 || 38 + 75 + 386 || enharmonic ||
|| 28/27, 15/14, 6/5 || 63 + 119 + 316 || soft chromatic ||
|| 22/21, 12/11, 7/6 || 81 + 151 + 267 || intense chromatic ||
|| 21/20, 10/9, 8/7 || 85 + 182 + 231 || soft diatonic ||
|| 28/27, 8/7, 9/8 || 63 + 231 + 204 || diatonon toniaion ||
|| 256/243, 9/8, 9/8 || 90 + 204 + 204 || diatonon ditoniaion ||
|| 16/15, 9/8, 10/9 || 112 + 182 + 204 || intense diatonic ||
|| 12/11, 11/10, 10/9 || 151 + 165 + 182 || equable diatonic ||


Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (e.g. 1/1, c, d, 4/3):


==Superparticular Intervals==
1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1


In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular-- meaning of the form n/n-1 (eg. 5/4, 6/5, 11/10, 39/38...).
[tetrachord #1], 9/8, [tetrachord #2]


Of course, you can also put them in opposite order:


=Tetrachords Generalized=
1/1, c, d, 4/3, 3/2, 3a/2, 3b/2, 2/1


All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals //a// &amp; //b//, &amp; then write our generalized tetrachord like this:
[tetrachord #2], 9/8, [tetrachord #1]


1/1, a, b, 4/3
=== Modes of a [tetrachord], 9/8, [tetrachord] scale ===
{| class="wikitable"
|-
! mode 1
| 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
|-
! mode 2
| 1/1, b/a, 4/3a, 3/2a, 3/2, 3b/2a, 2/a, 2/1
|-
! mode 3
| 1/1, 4b/3, 3b/2, 3a/2b, 3/2, 2/b, 2/b, 2/1
|-
! mode 4
| 1/1, 9/8, 9a/8, 9b/8, 3/2, 3a, 3b, 2/1
|-
! mode 5
| 1/1, a, b, 4/3, 4a/3, 4b/3, 16/9, 2/1
|-
! mode 6
| 1/1, b/a, 4/3a, 4/3, 4b/3a, 16/9a, 2/1
|-
! mode 7
| 1/1, 4/3b, 4a/3b, 4/3, 16/9b, 2/b, 2a/b, 2/1
|}


We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:
This type of scale contains not only one tetrachord, but three.


1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
1/1, a, b, 4/3 (mode 1, mode 5)


Between 3/2 and 4/3, we have 9/8, so another way to write it would be:
1/1, b/a, 4/3a, 4/3 (mode 6)


[tetrachord], 9/8, [tetrachord]
1/1, 4/3b, 4a/3b, 4/3 (mode 7)


When a tetrachord is paired with its copy, in this way, I call it a "heptatonic mirror." Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (eg. 1/1, c, d, 4/3):
These three tetrachords are all rotations of each other (they contain the same steps in a different order).


1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1
=== Tetrachord rotations ===
If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:


==Modes of a heptatonic mirror==
sML, MsL, sLM, MLs, LsM, LMs


Going back to our generalized heptatonic mirror, let's take a look at what modes we get by starting on different scale degrees.
If you have only two step sizes, s and L, then you have three possible rotations:


|| mode 1 || 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1 ||
ssL, sLs, Lss
|| mode 2 || 1/1, ||
||  ||  ||
||  ||  ||
||  ||  ||
||  ||  ||
||  ||  ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;tetrachord&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Related pages: &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The word &amp;quot;tetrachord&amp;quot; usually refers to the interval of a perfect fourth (just or not) divided into three subintervals by the interposition of two additional notes.&lt;br /&gt;
&lt;br /&gt;
John Chalmers, in &lt;a class="wiki_link_ext" href="http://eamusic.dartmouth.edu/%7Elarry/published_articles/divisions_of_the_tetrachord/index.html" rel="nofollow"&gt;Divisions of the Tetrachord&lt;/a&gt;, tells us:&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Medditterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the Near East, the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Ancient Greek Genera"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Ancient Greek Genera&lt;/h1&gt;
&lt;br /&gt;
The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval, or CI-- the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="Ancient Greek Genera--hyperenharmonic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;hyperenharmonic genus&lt;/h3&gt;
The CI is larger than 425 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="Ancient Greek Genera--enharmonic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;enharmonic genus&lt;/h3&gt;
The CI approximates a major third, falling between 425 cents and 375 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="Ancient Greek Genera--chromatic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;chromatic genus&lt;/h3&gt;
The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="Ancient Greek Genera--diatonic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;diatonic genus&lt;/h3&gt;
The CI (and the other intervals) approximates a &amp;quot;tone,&amp;quot; measuring less than 250 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Ancient Greek Genera-Ptolomy's Catalog"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Ptolomy's Catalog&lt;/h2&gt;
&lt;br /&gt;
In the &lt;em&gt;Harmonics&lt;/em&gt;, Ptolomy catalogs several historical tetrachords and attributes them to particular theorists.&lt;br /&gt;
&lt;br /&gt;


And, if you have only one step size (as is the case in [[Porcupine]] temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in [[22edo]] - see [[22edo tetrachords]].)


&lt;table class="wiki_table"&gt;
== Tetrachords in equal temperaments ==
    &lt;tr&gt;
Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with [[7edo]], which has one tetrachord:
        &lt;th colspan="3"&gt;Archytas's Genera&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 36/35, 5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 49 + 386&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 243/224, 32/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 141 + 294&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 8/7, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 231 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
1 + 1 + 1


We can use a notation with hyphens to specify tetrachords in equal temperaments. This tetrachord thus becomes:


&lt;table class="wiki_table"&gt;
{| class="wikitable"
    &lt;tr&gt;
|-
        &lt;th colspan="3"&gt;Eratosthenes's Genera&lt;br /&gt;
! tetrachord notation
&lt;/th&gt;
! cents between steps
    &lt;/tr&gt;
! cents from 0
    &lt;tr&gt;
|-
        &lt;td&gt;40/39, 39/38, 19/15&lt;br /&gt;
| 1-1-1
&lt;/td&gt;
| 171 + 171 + 171
        &lt;td&gt;44 + 45 + 409&lt;br /&gt;
| 0, 171, 343, 514
&lt;/td&gt;
|}
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20/19, 19/18, 6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;89 + 94 + 316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;256/243, 9/8, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90 + 204 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
=== Tetrachords of [[10edo]] ===
Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:


{| class="wikitable"
|-
! tetrachord notation
! cents between
! cents from 0
|-
| 1-1-2
| 120 + 120 + 240
| 0, 120, 240, 480
|-
| 1-2-1
| 120 + 240 + 120
| 0, 120, 360, 480
|-
| 2-1-1
| 240 + 120 + 120
| 0, 240, 360, 480
|}


&lt;table class="wiki_table"&gt;
Note that these tetrachords are all rotations of each other, and in terms of Greek genera, they are all "diatonic" (because the largest interval, or characteristic interval, at 240 cents, is less than 250 cents).
    &lt;tr&gt;
        &lt;th colspan="3"&gt;Didymos's Genera&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32/31, 31/30, 5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;55 + 57 + 386&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15, 25/24, 6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;112 + 74 + 316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15, 10/9, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;112 + 182 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
=== Tetrachords in other equal temperaments ===
* [[Armodue armonia#Creating scales with Armodue: modal systems-Modal systems based on tetrachords and pentachords|16edo tetrachords]]
* [[17edo tetrachords]]
* [[22edo tetrachords]]
* [[Tricesimoprimal Tetrachordal Tesseract]] (tetrachords of [[31edo]])


If you'd like to wrestle some tetrachords out of an equal temperament, please consider making a page for them and linking to that page from here!


&lt;table class="wiki_table"&gt;
== Dividing other-than-perfect fourths ==
    &lt;tr&gt;
A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: [[6edo]], [[8edo]], [[9edo]], [[11edo]], [[13edo]], [[16edo]]. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of "tetrachord" stop being useful?
        &lt;th colspan="3"&gt;Ptolemy's Tunings&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46/45, 24/23, 5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38 + 75 + 386&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 15/14, 6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 119 + 316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;soft chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22/21, 12/11, 7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81 + 151 + 267&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;intense chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21/20, 10/9, 8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85 + 182 + 231&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;soft diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 8/7, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 231 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonon toniaion&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;256/243, 9/8, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90 + 204 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonon ditoniaion&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15, 9/8, 10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;112 + 182 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;intense diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12/11, 11/10, 10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;151 + 165 + 182&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;equable diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
== Tetrachords and nonoctave scales ==
&lt;br /&gt;
Dividing a tenth into three equal parts generates a cycle of three fourths, they resembling perfect fourths when the division is done on a minor tenth.
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Ancient Greek Genera-Superparticular Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Superparticular Intervals&lt;/h2&gt;
&lt;br /&gt;
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular-- meaning of the form n/n-1 (eg. 5/4, 6/5, 11/10, 39/38...).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Tetrachords Generalized"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Tetrachords Generalized&lt;/h1&gt;
&lt;br /&gt;
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals &lt;em&gt;a&lt;/em&gt; &amp;amp; &lt;em&gt;b&lt;/em&gt;, &amp;amp; then write our generalized tetrachord like this:&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3&lt;br /&gt;
&lt;br /&gt;
We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
&lt;br /&gt;
Between 3/2 and 4/3, we have 9/8, so another way to write it would be:&lt;br /&gt;
&lt;br /&gt;
[tetrachord], 9/8, [tetrachord]&lt;br /&gt;
&lt;br /&gt;
When a tetrachord is paired with its copy, in this way, I call it a &amp;quot;heptatonic mirror.&amp;quot; Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (eg. 1/1, c, d, 4/3):&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Tetrachords Generalized-Modes of a heptatonic mirror"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Modes of a heptatonic mirror&lt;/h2&gt;
&lt;br /&gt;
Going back to our generalized heptatonic mirror, let's take a look at what modes we get by starting on different scale degrees.&lt;br /&gt;
&lt;br /&gt;


An example with [[Carlos Gamma]]:
* [http://www.seraph.it/dep/det/GloriousGuitars.mp3 Glorious Guitars] by [[Carlo Serafini]] ([http://www.seraph.it/blog_files/e8a36018d6b782c8ff7bc2416fa7ea5b-47.html blog entry])


&lt;table class="wiki_table"&gt;
== See also ==
    &lt;tr&gt;
* [[Gallery of Wakalixes#Divisions of the Tetrachord|Wakalix tetrachords]]
        &lt;td&gt;mode 1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1,&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
[[Category:Tetrachords| ]] <!-- main article -->
[[Category:Scale]]
[[Category:Terms]]
[[Category:Ancient Greek music]]
[[Category:Arabic music]]
[[Category:Historical]]

Latest revision as of 08:21, 18 December 2024

Not to be confused with Tetrad.
English Wikipedia has an article on:

A tetrachord is a four-note segment of a scale or tone row, usually spanning the interval of a perfect fourth (possibly tempered). It can be formed by dividing the perfect fourth into three subintervals by the interposition of two additional notes.

Tetrachords are fundamental to many musical traditions around the world. John Chalmers, in Divisions of the Tetrachord, tells us:

Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Mediterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the Near East, the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.

Ancient Greek genera

The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval (CI): the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.

hyperenharmonic genus
The CI is larger than 425 cents.
enharmonic genus
The CI approximates a major third, falling between 425 cents and 375 cents.
chromatic genus
The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.
diatonic genus
The CI (and the other intervals) approximates a "tone", measuring less than 250 cents.

Ptolemy's catalog

In the Harmonics, Ptolemy catalogs several historical tetrachords and attributes them to particular theorists.

Archytas's Genera
28/27, 36/35, 5/4 63 + 49 + 386 enharmonic
28/27, 243/224, 32/27 63 + 141 + 294 chromatic
28/27, 8/7, 9/8 63 + 231 + 204 diatonic
Eratosthenes's Genera
40/39, 39/38, 19/15 44 + 45 + 409 enharmonic
20/19, 19/18, 6/5 89 + 94 + 316 chromatic
256/243, 9/8, 9/8 90 + 204 + 204 diatonic
Didymos's Genera
32/31, 31/30, 5/4 55 + 57 + 386 enharmonic
16/15, 25/24, 6/5 112 + 74 + 316 chromatic
16/15, 10/9, 9/8 112 + 182 + 204 diatonic
Ptolemy's Tunings
46/45, 24/23, 5/4 38 + 75 + 386 enharmonic
28/27, 15/14, 6/5 63 + 119 + 316 soft chromatic
22/21, 12/11, 7/6 81 + 151 + 267 intense chromatic
21/20, 10/9, 8/7 85 + 182 + 231 soft diatonic
28/27, 8/7, 9/8 63 + 231 + 204 diatonon toniaion
256/243, 9/8, 9/8 90 + 204 + 204 diatonon ditoniaion
16/15, 9/8, 10/9 112 + 182 + 204 intense diatonic
12/11, 11/10, 10/9 151 + 165 + 182 equable diatonic

Superparticular intervals

In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular.

Jins/ajnas (tetrachords in middle-eastern music)

A concept similar to the tetrachord exists in Arabic music theory: a jins (pl. ajnas) is a set of three, four or five stepwise pitches used to build an Arabic maqam.

Generalized tetrachords

All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals a & b, & then write our generalized tetrachord like this:

1/1, a, b, 4/3

We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:

1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1

Between 3/2 and 4/3, we have 9/8, so another way to write it would be:

[tetrachord], 9/8, [tetrachord]

Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (e.g. 1/1, c, d, 4/3):

1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1

[tetrachord #1], 9/8, [tetrachord #2]

Of course, you can also put them in opposite order:

1/1, c, d, 4/3, 3/2, 3a/2, 3b/2, 2/1

[tetrachord #2], 9/8, [tetrachord #1]

Modes of a [tetrachord], 9/8, [tetrachord] scale

mode 1 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
mode 2 1/1, b/a, 4/3a, 3/2a, 3/2, 3b/2a, 2/a, 2/1
mode 3 1/1, 4b/3, 3b/2, 3a/2b, 3/2, 2/b, 2/b, 2/1
mode 4 1/1, 9/8, 9a/8, 9b/8, 3/2, 3a, 3b, 2/1
mode 5 1/1, a, b, 4/3, 4a/3, 4b/3, 16/9, 2/1
mode 6 1/1, b/a, 4/3a, 4/3, 4b/3a, 16/9a, 2/1
mode 7 1/1, 4/3b, 4a/3b, 4/3, 16/9b, 2/b, 2a/b, 2/1

This type of scale contains not only one tetrachord, but three.

1/1, a, b, 4/3 (mode 1, mode 5)

1/1, b/a, 4/3a, 4/3 (mode 6)

1/1, 4/3b, 4a/3b, 4/3 (mode 7)

These three tetrachords are all rotations of each other (they contain the same steps in a different order).

Tetrachord rotations

If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:

sML, MsL, sLM, MLs, LsM, LMs

If you have only two step sizes, s and L, then you have three possible rotations:

ssL, sLs, Lss

And, if you have only one step size (as is the case in Porcupine temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in 22edo - see 22edo tetrachords.)

Tetrachords in equal temperaments

Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with 7edo, which has one tetrachord:

1 + 1 + 1

We can use a notation with hyphens to specify tetrachords in equal temperaments. This tetrachord thus becomes:

tetrachord notation cents between steps cents from 0
1-1-1 171 + 171 + 171 0, 171, 343, 514

Tetrachords of 10edo

Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:

tetrachord notation cents between cents from 0
1-1-2 120 + 120 + 240 0, 120, 240, 480
1-2-1 120 + 240 + 120 0, 120, 360, 480
2-1-1 240 + 120 + 120 0, 240, 360, 480

Note that these tetrachords are all rotations of each other, and in terms of Greek genera, they are all "diatonic" (because the largest interval, or characteristic interval, at 240 cents, is less than 250 cents).

Tetrachords in other equal temperaments

If you'd like to wrestle some tetrachords out of an equal temperament, please consider making a page for them and linking to that page from here!

Dividing other-than-perfect fourths

A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: 6edo, 8edo, 9edo, 11edo, 13edo, 16edo. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of "tetrachord" stop being useful?

Tetrachords and nonoctave scales

Dividing a tenth into three equal parts generates a cycle of three fourths, they resembling perfect fourths when the division is done on a minor tenth.

An example with Carlos Gamma:

See also