User:BudjarnLambeth/Sandbox2: Difference between revisions
(75 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Quick link | |||
[[User:BudjarnLambeth/Draft related tunings section]] | |||
= Title1 = | = Title1 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of stretched- and compressed-octave 60edo tunings. | |||
; [[35edf]] | |||
* Step size: 20.056{{c}}, octave size: 1203.35{{c}} | |||
Stretching the octave of 60edo by a little over 3{{c}} results in improved primes 5, 7 and 11 but worse primes 2, 3 and 13. This approximates all harmonics up to 16 within 10.00{{c}}. The tuning 35edf does this. | |||
{{Harmonics in equal|35|3|2|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 35edf}} | |||
{{Harmonics in equal|35|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 35edf (continued)}} | |||
; [[139ed5]] | |||
* Step size: 20.045{{c}}, octave size: 1202.73{{c}} | |||
Stretching the octave of 60edo by a little under{{c}} results in improved primes 5, 7 and 11, but worse primes 2, 3 and 13. This approximates all harmonics up to 16 within 9.56{{c}}. The tuning 139ed5 does this. | |||
{{Harmonics in equal|139|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 139ed5}} | |||
{{Harmonics in equal|139|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 139ed5 (continued)}} | |||
; [[zpi|301zpi]] | |||
* Step size: 20.027{{c}}, octave size: 1201.62{{c}} | |||
Stretching the octave of 60edo by around 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but worse primes 2. This approximates all harmonics up to 16 within 6.48{{c}}. The tuning 301zpi does this. | |||
{{Harmonics in cet|20.027|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 301zpi}} | |||
{{Harmonics in cet| 20.027 |intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 301zpi (continued)}} | |||
; [[95edt]] | |||
* Step size: 20.021{{c}}, octave size: 1201.23{{c}} | |||
Stretching the octave of 60edo by just over a cent results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 7.06{{c}}. The tuning 95edt does this. | |||
{{Harmonics in equal|95|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 95edt}} | |||
{{Harmonics in equal|95|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 95edt (continued)}} | |||
; [[WE|60et, 13-limit WE tuning]] / [[155ed6]] | |||
* Step size: 20.013{{c}}, octave size: 1200.78{{c}} | |||
Stretching the octave of 60edo by just under a cent results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 8.63{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. So does 155ed6 whose octaves differ by only 0.02{{c}}. | |||
{{Harmonics in cet|20.013|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60et, 13-limit WE tuning}} | |||
{{Harmonics in cet|20.013|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60et, 13-limit WE tuning (continued)}} | |||
; [[ | ; [[ed12|215ed12]] | ||
* Step size: | * Step size: 20.009{{c}}, octave size: 1200.55{{c}} | ||
Stretching the octave of | Stretching the octave of 215ed12 by around half a cent results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 9.44{{c}}. The tuning 215ed12 does this. | ||
{{Harmonics in | {{Harmonics in equal|215|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 215ed12}} | ||
{{Harmonics in | {{Harmonics in equal|215|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 215ed12 (continued)}} | ||
; | ; 60edo | ||
* Step size: | * Step size: 20.000{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves 60edo approximates all harmonics up to 16 within 8.83{{c}}. | |||
{{Harmonics in | {{Harmonics in equal|60|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edo}} | ||
{{Harmonics in | {{Harmonics in equal|60|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edo (continued)}} | ||
; | ; [[zpi|302zpi]] | ||
* Step size: | * Step size: 19.962{{c}}, octave size: 1197.72{{c}} | ||
Compressing the octave of 60edo by around 2{{c}} results in improved primes 7 and 11, but worse primes 2, 3, 5 and 13. This approximates all harmonics up to 16 within 9.84{{c}}. The tuning 202zpi does this. So does the tuning [[equal tuning|208ed11]] whose octave is identical within 0.3{{c}}. | |||
{{Harmonics in | {{Harmonics in cet|19.962|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 302zpi}} | ||
{{Harmonics in | {{Harmonics in cet|19.962|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 302zpi (continued)}} | ||
302zpi is particularly well suited to [[catnip]] temperament specifically: in 60edo, catnip's mappings of 5 and 13 both differ from the [[patent val]]s, but in 19.95cet, only it's mapping of 7 differs. The tuning 169ed7 also does this, but 302zpi approximates most simple harmonics better than 169ed7. | |||
; [[ | ; [[ed7|169ed7]] | ||
* Step size: | * Step size: 19.958{{c}}, octave size: 1197.50{{c}} | ||
Compressing the octave of | Compressing the octave of 60edo by around 2.5{{c}} results in improved primes 7 and 11, but worse primes 2, 3, 5 and 13. This approximates all harmonics up to 16 within 9.94{{c}}. The tuning 169ed7 does this. | ||
{{Harmonics in | {{Harmonics in equal|169|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 169ed7}} | ||
{{Harmonics in | {{Harmonics in equal|169|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 169ed7 (continued)}} | ||
; [[ | ; [[zpi|303zpi]] | ||
* Step size: | * Step size: 19.913{{c}}, octave size: 1194.78{{c}} | ||
Compressing the octave of | Compressing the octave of 60edo by around 5{{c}} results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within 8.75{{c}}. The tuning 303zpi does this. So does [[equal tuning|223ed13]] whose octave is identical within 0.03{{c}}. | ||
{{Harmonics in | {{Harmonics in cet|19.913|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 303zpi}} | ||
{{Harmonics in | {{Harmonics in cet|19.913|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 303zpi (continued)}} | ||
= Title2 = | = Title2 = | ||
=== Lab === | |||
Place holder | |||
<br><br><br><br><br> | |||
{{harmonics in cet | 300 | intervals=prime}} | |||
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}} | |||
=== Possible tunings to be used on each page === | === Possible tunings to be used on each page === | ||
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming. | You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming. | ||
Line 48: | Line 88: | ||
; High-priority | ; High-priority | ||
60edo (narrow down edonoi & ZPIs) | 60edo (narrow down edonoi & ZPIs) | ||
* 35edf | * 35edf | ||
* 139ed5 | * 139ed5 | ||
* 301zpi (20.027c) | * 301zpi (20.027c) | ||
* 95edt | |||
* 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different) | |||
* 215ed12 | |||
* 302zpi (19.962c) | * 302zpi (19.962c) | ||
* 208ed11 (ideal for catnip temperament) | |||
* 303zpi (19.913c) | * 303zpi (19.913c) | ||
32edo | |||
* 13-limit WE (37.481c) | |||
* 11-limit WE (37.453c) | |||
* 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}}) | |||
* | |||
* | |||
* | |||
* 51edt | * 51edt | ||
* 134zpi (37.176c) | |||
* 75ed5 | * 75ed5 | ||
33edo | 33edo | ||
* 76ed5 | * 76ed5 | ||
* 92ed7 | * 92ed7 (137zpi's octave differs by only 0.3{{c}}) | ||
* | * 52ed13 | ||
* 114ed11 | * 114ed11 | ||
* 122ed13 | * 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}}) | ||
* | * 13-limit WE (36.357c) | ||
* | * 93ed7 (optimised for dual-fifths) | ||
* 77ed5 | * 77ed5 (139zpi's octave differs by only 0.2{{c}}) | ||
* 123ed13 | * 123ed13 / 1ed47/46 (identical within <0.1{{c}}) | ||
* 115ed11 | * 115ed11 | ||
39edo | 39edo | ||
* | * 171zpi (30.973c) (optimised for dual-fifths use) | ||
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}}) | |||
* 101ed6 (octave of 172zpi differs by only 0.4{{c}}) | |||
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}}) | |||
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}}) | |||
* 13-limit WE (30.757c) | * 91ed5 | ||
* | |||
* | |||
* | |||
42edo | 42edo | ||
* | * 108ed6 (octave is identical to 97ed5 within 0.1{{c}}) | ||
* | * 189zpi (28.689c) | ||
* | * 150ed12 | ||
* | * 145ed11 | ||
* | ''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo'' | ||
* 118ed7 | |||
* 13-limit WE (28.534c) | * 13-limit WE (28.534c) | ||
* | * 151ed12 (octave is identical to 7-limit WE within 0.3{{c}}) | ||
* | * 109ed6 | ||
* 191zpi (28.444c) | * 191zpi (28.444c) | ||
* 67edt | |||
45edo | 45edo | ||
* | * 209zpi (26.550) | ||
* | * 13-limit WE (26.695c) | ||
* 161ed12 | |||
* 116ed6 (octave identical to 126ed7 within 0.1{{c}}) | |||
* 7-limit WE (26.745c) | * 7-limit WE (26.745c) | ||
* 207zpi (26.762) | * 207zpi (26.762) | ||
* | * 71edt (octave identical to 155ed11 within 0.3{{c}}) | ||
54edo ( | 54edo | ||
* | * 139ed6 (octave is identical to 262zpi within 0.2{{c}}) | ||
* | * 151ed7 | ||
* 193ed12 | |||
* 263zpi (22.243c) | |||
* 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1{{c}}) | |||
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}}) | |||
* 152ed7 | * 152ed7 | ||
* | * 140ed6 | ||
* | * 126ed5 (octave is identical to 86edt within 0.1{{c}}) | ||
59edo | 59edo | ||
* | * 152ed6 | ||
* 294zpi (20.399c) | * 294zpi (20.399c) | ||
* 211ed12 | |||
* 295zpi (20.342c) | * 295zpi (20.342c) | ||
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}'' | |||
* 13-limit WE (20.320c) | |||
* 7-limit WE (20.301c) | |||
* 166ed7 | |||
* 212ed12 | |||
* 296zpi (20.282c) | * 296zpi (20.282c) | ||
* | * 153ed6 | ||
64edo ( | 64edo | ||
* | * 179ed7 (octave is identical to 326zpi within 0.3{{c}}) | ||
* | * 165ed6 | ||
* | * 229ed12 (octave is identical to 221ed11 within 0.1{{c}}) | ||
* 327zpi (18.767c) | |||
* 11-limit WE (18.755c) | * 11-limit WE (18.755c) | ||
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}'' | |||
* 328zpi (18.721c) | * 328zpi (18.721c) | ||
* | * 180ed7 | ||
* | * 230ed12 | ||
* 149ed5 | |||
; Medium priority | |||
118edo (choose ZPIS) | |||
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}} | |||
* 187edt | |||
* 69edf | |||
* 13-limit WE (10.171c) | |||
* Best nearby ZPI(s) | |||
13edo | |||
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}} | |||
* Main: "13edo and optimal octave stretching" | |||
* 2.5.11.13 WE (92.483c) | |||
* 2.5.7.13 WE (92.804c) | |||
* 2.3 WE (91.405c) (good for opposite 7 mapping) | |||
* 38zpi (92.531c) | |||
103edo (narrow down edonoi, choose ZPIS) | 103edo (narrow down edonoi, choose ZPIS) | ||
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}} | |||
* 163edt | * 163edt | ||
* 239ed5 | * 239ed5 | ||
* | * 266ed6 | ||
* 289ed7 | * 289ed7 | ||
* 356ed11 | * 356ed11 | ||
* | * 369ed12 | ||
* 381ed13 | * 381ed13 | ||
* 421ed17 | * 421ed17 | ||
Line 208: | Line 218: | ||
111edo (choose ZPIS) | 111edo (choose ZPIS) | ||
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
* 1-2 WE tunings | * 1-2 WE tunings | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
Line 289: | Line 294: | ||
25edo | 25edo | ||
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 295: | Line 301: | ||
26edo | 26edo | ||
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 301: | Line 308: | ||
29edo | 29edo | ||
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 307: | Line 315: | ||
30edo | 30edo | ||
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 313: | Line 322: | ||
34edo | 34edo | ||
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 319: | Line 329: | ||
35edo | 35edo | ||
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 325: | Line 336: | ||
36edo | 36edo | ||
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 331: | Line 343: | ||
37edo | 37edo | ||
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 336: | Line 349: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
9edo | |||
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 342: | Line 356: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
10edo | |||
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 348: | Line 363: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
11edo | |||
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 354: | Line 370: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
15edo | |||
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 360: | Line 377: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
18edo | |||
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 366: | Line 384: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
48edo | |||
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 372: | Line 391: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
5edo | |||
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 378: | Line 398: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
6edo | |||
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 385: | Line 406: | ||
20edo | 20edo | ||
{{harmonics in equal | 20 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 391: | Line 413: | ||
24edo | 24edo | ||
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 397: | Line 420: | ||
28edo | 28edo | ||
{{harmonics in equal | 28 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
* 1-2 WE tunings | * 1-2 WE tunings | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) |
Latest revision as of 22:21, 29 August 2025
Quick link
User:BudjarnLambeth/Draft related tunings section
Title1
Octave stretch or compression
What follows is a comparison of stretched- and compressed-octave 60edo tunings.
- Step size: 20.056 ¢, octave size: 1203.35 ¢
Stretching the octave of 60edo by a little over 3 ¢ results in improved primes 5, 7 and 11 but worse primes 2, 3 and 13. This approximates all harmonics up to 16 within 10.00 ¢. The tuning 35edf does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.35 | +3.35 | +6.70 | +1.45 | +6.70 | +0.56 | -10.00 | +6.70 | +4.80 | +0.24 | -10.00 |
Relative (%) | +16.7 | +16.7 | +33.4 | +7.2 | +33.4 | +2.8 | -49.9 | +33.4 | +23.9 | +1.2 | -49.9 | |
Steps (reduced) |
60 (25) |
95 (25) |
120 (15) |
139 (34) |
155 (15) |
168 (28) |
179 (4) |
190 (15) |
199 (24) |
207 (32) |
214 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.18 | +3.91 | +4.80 | -6.65 | +8.73 | -10.00 | -3.33 | +8.15 | +3.91 | +3.60 | +6.86 | -6.65 |
Relative (%) | -40.8 | +19.5 | +23.9 | -33.2 | +43.5 | -49.9 | -16.6 | +40.7 | +19.5 | +17.9 | +34.2 | -33.2 | |
Steps (reduced) |
221 (11) |
228 (18) |
234 (24) |
239 (29) |
245 (0) |
249 (4) |
254 (9) |
259 (14) |
263 (18) |
267 (22) |
271 (26) |
274 (29) |
- Step size: 20.045 ¢, octave size: 1202.73 ¢
Stretching the octave of 60edo by a little under ¢ results in improved primes 5, 7 and 11, but worse primes 2, 3 and 13. This approximates all harmonics up to 16 within 9.56 ¢. The tuning 139ed5 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.73 | +2.36 | +5.45 | +0.00 | +5.09 | -1.19 | +8.18 | +4.72 | +2.73 | -1.92 | +7.81 |
Relative (%) | +13.6 | +11.8 | +27.2 | +0.0 | +25.4 | -6.0 | +40.8 | +23.5 | +13.6 | -9.6 | +39.0 | |
Steps (reduced) |
60 (60) |
95 (95) |
120 (120) |
139 (0) |
155 (16) |
168 (29) |
180 (41) |
190 (51) |
199 (60) |
207 (68) |
215 (76) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.56 | +1.53 | +2.36 | -9.14 | +6.17 | +7.45 | -5.98 | +5.45 | +1.17 | +0.81 | +4.04 | -9.51 |
Relative (%) | +47.7 | +7.6 | +11.8 | -45.6 | +30.8 | +37.1 | -29.8 | +27.2 | +5.8 | +4.0 | +20.1 | -47.4 | |
Steps (reduced) |
222 (83) |
228 (89) |
234 (95) |
239 (100) |
245 (106) |
250 (111) |
254 (115) |
259 (120) |
263 (124) |
267 (128) |
271 (132) |
274 (135) |
- Step size: 20.027 ¢, octave size: 1201.62 ¢
Stretching the octave of 60edo by around 1.5 ¢ results in improved primes 3, 5, 7, 11 and 13, but worse primes 2. This approximates all harmonics up to 16 within 6.48 ¢. The tuning 301zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.62 | +0.61 | +3.24 | -2.56 | +2.23 | -4.29 | +4.86 | +1.22 | -0.94 | -5.73 | +3.85 |
Relative (%) | +8.1 | +3.0 | +16.2 | -12.8 | +11.1 | -21.4 | +24.3 | +6.1 | -4.7 | -28.6 | +19.2 | |
Step | 60 | 95 | 120 | 139 | 155 | 168 | 180 | 190 | 199 | 207 | 215 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.47 | -2.67 | -1.95 | +6.48 | +1.66 | +2.84 | +9.37 | +0.68 | -3.68 | -4.11 | -0.96 | +5.47 |
Relative (%) | +27.3 | -13.3 | -9.7 | +32.4 | +8.3 | +14.2 | +46.8 | +3.4 | -18.4 | -20.5 | -4.8 | +27.3 | |
Step | 222 | 228 | 234 | 240 | 245 | 250 | 255 | 259 | 263 | 267 | 271 | 275 |
- Step size: 20.021 ¢, octave size: 1201.23 ¢
Stretching the octave of 60edo by just over a cent results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 7.06 ¢. The tuning 95edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | +0.00 | +2.47 | -3.45 | +1.23 | -5.37 | +3.70 | +0.00 | -2.22 | -7.06 | +2.47 |
Relative (%) | +6.2 | +0.0 | +12.3 | -17.2 | +6.2 | -26.8 | +18.5 | +0.0 | -11.1 | -35.3 | +12.3 | |
Steps (reduced) |
60 (60) |
95 (0) |
120 (25) |
139 (44) |
155 (60) |
168 (73) |
180 (85) |
190 (0) |
199 (9) |
207 (17) |
215 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.04 | -4.13 | -3.45 | +4.94 | +0.09 | +1.23 | +7.73 | -0.98 | -5.37 | -5.82 | -2.70 | +3.70 |
Relative (%) | +20.2 | -20.6 | -17.2 | +24.7 | +0.4 | +6.2 | +38.6 | -4.9 | -26.8 | -29.1 | -13.5 | +18.5 | |
Steps (reduced) |
222 (32) |
228 (38) |
234 (44) |
240 (50) |
245 (55) |
250 (60) |
255 (65) |
259 (69) |
263 (73) |
267 (77) |
271 (81) |
275 (85) |
- Step size: 20.013 ¢, octave size: 1200.78 ¢
Stretching the octave of 60edo by just under a cent results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 8.63 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this. So does 155ed6 whose octaves differ by only 0.02 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.78 | -0.72 | +1.56 | -4.51 | +0.06 | -6.64 | +2.34 | -1.44 | -3.73 | -8.63 | +0.84 |
Relative (%) | +3.9 | -3.6 | +7.8 | -22.5 | +0.3 | -33.2 | +11.7 | -7.2 | -18.6 | -43.1 | +4.2 | |
Step | 60 | 95 | 120 | 139 | 155 | 168 | 180 | 190 | 199 | 207 | 215 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.36 | -5.86 | -5.23 | +3.12 | -1.77 | -0.66 | +5.80 | -2.95 | -7.36 | -7.85 | -4.75 | +1.62 |
Relative (%) | +11.8 | -29.3 | -26.1 | +15.6 | -8.8 | -3.3 | +29.0 | -14.7 | -36.8 | -39.2 | -23.7 | +8.1 | |
Step | 222 | 228 | 234 | 240 | 245 | 250 | 255 | 259 | 263 | 267 | 271 | 275 |
- Step size: 20.009 ¢, octave size: 1200.55 ¢
Stretching the octave of 215ed12 by around half a cent results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 9.44 ¢. The tuning 215ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.55 | -1.09 | +1.09 | -5.05 | -0.55 | -7.30 | +1.64 | -2.18 | -4.50 | -9.44 | +0.00 |
Relative (%) | +2.7 | -5.5 | +5.5 | -25.2 | -2.7 | -36.5 | +8.2 | -10.9 | -22.5 | -47.2 | +0.0 | |
Steps (reduced) |
60 (60) |
95 (95) |
120 (120) |
139 (139) |
155 (155) |
168 (168) |
180 (180) |
190 (190) |
199 (199) |
207 (207) |
215 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.49 | -6.75 | -6.14 | +2.18 | -2.73 | -1.64 | +4.81 | -3.96 | -8.39 | -8.89 | -5.81 | +0.55 |
Relative (%) | +7.5 | -33.7 | -30.7 | +10.9 | -13.6 | -8.2 | +24.0 | -19.8 | -41.9 | -44.4 | -29.0 | +2.7 | |
Steps (reduced) |
222 (7) |
228 (13) |
234 (19) |
240 (25) |
245 (30) |
250 (35) |
255 (40) |
259 (44) |
263 (48) |
267 (52) |
271 (56) |
275 (60) |
- 60edo
- Step size: 20.000 ¢, octave size: 1200.00 ¢
Pure-octaves 60edo approximates all harmonics up to 16 within 8.83 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.96 | +0.00 | -6.31 | -1.96 | -8.83 | +0.00 | -3.91 | -6.31 | +8.68 | -1.96 |
Relative (%) | +0.0 | -9.8 | +0.0 | -31.6 | -9.8 | -44.1 | +0.0 | -19.6 | -31.6 | +43.4 | -9.8 | |
Steps (reduced) |
60 (0) |
95 (35) |
120 (0) |
139 (19) |
155 (35) |
168 (48) |
180 (0) |
190 (10) |
199 (19) |
208 (28) |
215 (35) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.53 | -8.83 | -8.27 | +0.00 | -4.96 | -3.91 | +2.49 | -6.31 | +9.22 | +8.68 | -8.27 | -1.96 |
Relative (%) | -2.6 | -44.1 | -41.3 | +0.0 | -24.8 | -19.6 | +12.4 | -31.6 | +46.1 | +43.4 | -41.4 | -9.8 | |
Steps (reduced) |
222 (42) |
228 (48) |
234 (54) |
240 (0) |
245 (5) |
250 (10) |
255 (15) |
259 (19) |
264 (24) |
268 (28) |
271 (31) |
275 (35) |
- Step size: 19.962 ¢, octave size: 1197.72 ¢
Compressing the octave of 60edo by around 2 ¢ results in improved primes 7 and 11, but worse primes 2, 3, 5 and 13. This approximates all harmonics up to 16 within 9.84 ¢. The tuning 202zpi does this. So does the tuning 208ed11 whose octave is identical within 0.3 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.28 | -5.57 | -4.56 | +8.37 | -7.85 | +4.75 | -6.84 | +8.83 | +6.09 | +0.78 | +9.84 |
Relative (%) | -11.4 | -27.9 | -22.8 | +41.9 | -39.3 | +23.8 | -34.3 | +44.2 | +30.5 | +3.9 | +49.3 | |
Step | 60 | 95 | 120 | 140 | 155 | 169 | 180 | 191 | 200 | 208 | 216 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.96 | +2.47 | +2.80 | -9.12 | +5.70 | +6.55 | -7.20 | +3.81 | -0.81 | -1.50 | +1.39 | +7.56 |
Relative (%) | -44.9 | +12.4 | +14.0 | -45.7 | +28.5 | +32.8 | -36.1 | +19.1 | -4.1 | -7.5 | +7.0 | +37.9 | |
Step | 222 | 229 | 235 | 240 | 246 | 251 | 255 | 260 | 264 | 268 | 272 | 276 |
302zpi is particularly well suited to catnip temperament specifically: in 60edo, catnip's mappings of 5 and 13 both differ from the patent vals, but in 19.95cet, only it's mapping of 7 differs. The tuning 169ed7 also does this, but 302zpi approximates most simple harmonics better than 169ed7.
- Step size: 19.958 ¢, octave size: 1197.50 ¢
Compressing the octave of 60edo by around 2.5 ¢ results in improved primes 7 and 11, but worse primes 2, 3, 5 and 13. This approximates all harmonics up to 16 within 9.94 ¢. The tuning 169ed7 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.97 | -8.24 | -7.93 | +4.43 | +7.73 | +0.00 | +8.03 | +3.46 | +0.46 | -5.07 | +3.76 |
Relative (%) | -19.9 | -41.3 | -39.8 | +22.2 | +38.8 | +0.0 | +40.3 | +17.4 | +2.3 | -25.4 | +18.9 | |
Steps (reduced) |
60 (60) |
95 (95) |
120 (120) |
140 (140) |
156 (156) |
169 (0) |
181 (12) |
191 (22) |
200 (31) |
208 (39) |
216 (47) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.73 | -3.97 | -3.81 | +4.07 | -1.22 | -0.51 | +5.56 | -3.50 | -8.24 | -9.04 | -6.26 | -0.20 |
Relative (%) | +23.7 | -19.9 | -19.1 | +20.4 | -6.1 | -2.5 | +27.9 | -17.6 | -41.3 | -45.3 | -31.4 | -1.0 | |
Steps (reduced) |
223 (54) |
229 (60) |
235 (66) |
241 (72) |
246 (77) |
251 (82) |
256 (87) |
260 (91) |
264 (95) |
268 (99) |
272 (103) |
276 (107) |
- Step size: 19.913 ¢, octave size: 1194.78 ¢
Compressing the octave of 60edo by around 5 ¢ results in improved primes 5, 7 and 13, but worse primes 2, 3 and 11. This approximates all harmonics up to 16 within 8.75 ¢. The tuning 303zpi does this. So does 223ed13 whose octave is identical within 0.03 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.22 | +9.69 | +9.47 | +1.51 | +4.47 | -3.53 | +4.25 | -0.53 | -3.71 | -9.41 | -0.75 |
Relative (%) | -26.2 | +48.7 | +47.6 | +7.6 | +22.5 | -17.7 | +21.4 | -2.6 | -18.6 | -47.3 | -3.8 | |
Step | 60 | 96 | 121 | 140 | 156 | 169 | 181 | 191 | 200 | 208 | 216 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.07 | -8.75 | -8.71 | -0.97 | -6.36 | -5.75 | +0.21 | -8.93 | +6.16 | +5.28 | +7.97 | -5.97 |
Relative (%) | +0.4 | -43.9 | -43.8 | -4.9 | -31.9 | -28.9 | +1.1 | -44.9 | +31.0 | +26.5 | +40.0 | -30.0 | |
Step | 223 | 229 | 235 | 241 | 246 | 251 | 256 | 260 | 265 | 269 | 273 | 276 |
Title2
Lab
Place holder
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | -102 | -86 | -69 | +49 | +59 | -105 | +2 | -28 | -130 | +55 |
Relative (%) | +0.0 | -34.0 | -28.8 | -22.9 | +16.2 | +19.8 | -35.0 | +0.8 | -9.4 | -43.2 | +18.3 | |
Step | 4 | 6 | 9 | 11 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.6 | +3.2 | +10.0 | +11.3 | -3.0 | +15.1 | +11.6 | +3.4 | +10.6 | +8.8 | -14.5 |
Relative (%) | -5.2 | +10.4 | +32.4 | +36.7 | -9.8 | +49.0 | +37.6 | +11.0 | +34.6 | +28.6 | -47.1 | |
Steps (reduced) |
39 (39) |
62 (62) |
91 (91) |
110 (110) |
135 (135) |
145 (5) |
160 (20) |
166 (26) |
177 (37) |
190 (50) |
193 (53) |
Possible tunings to be used on each page
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
- High-priority
60edo (narrow down edonoi & ZPIs)
- 35edf
- 139ed5
- 301zpi (20.027c)
- 95edt
- 13-limit WE (20.013c) (155ed6 has octaves only 0.02 ¢ different)
- 215ed12
- 302zpi (19.962c)
- 208ed11 (ideal for catnip temperament)
- 303zpi (19.913c)
32edo
- 13-limit WE (37.481c)
- 11-limit WE (37.453c)
- 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4 ¢)
- 51edt
- 134zpi (37.176c)
- 75ed5
33edo
- 76ed5
- 92ed7 (137zpi's octave differs by only 0.3 ¢)
- 52ed13
- 114ed11
- 138zpi (36.394c) (122ed13's octave differs by only 0.1 ¢)
- 13-limit WE (36.357c)
- 93ed7 (optimised for dual-fifths)
- 77ed5 (139zpi's octave differs by only 0.2 ¢)
- 123ed13 / 1ed47/46 (identical within <0.1 ¢)
- 115ed11
39edo
- 171zpi (30.973c) (optimised for dual-fifths use)
- 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2 ¢)
- 101ed6 (octave of 172zpi differs by only 0.4 ¢)
- 173zpi (30.672c) (octave of 62edt differs by only 0.2 ¢)
- 110ed7 (octave of 145ed13 differs by only 0.1 ¢)
- 91ed5
42edo
- 108ed6 (octave is identical to 97ed5 within 0.1 ¢)
- 189zpi (28.689c)
- 150ed12
- 145ed11
190zpi's octave is within 0.05 ¢ of pure-octaves 42edo
- 118ed7
- 13-limit WE (28.534c)
- 151ed12 (octave is identical to 7-limit WE within 0.3 ¢)
- 109ed6
- 191zpi (28.444c)
- 67edt
45edo
- 209zpi (26.550)
- 13-limit WE (26.695c)
- 161ed12
- 116ed6 (octave identical to 126ed7 within 0.1 ¢)
- 7-limit WE (26.745c)
- 207zpi (26.762)
- 71edt (octave identical to 155ed11 within 0.3 ¢)
54edo
- 139ed6 (octave is identical to 262zpi within 0.2 ¢)
- 151ed7
- 193ed12
- 263zpi (22.243c)
- 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1 ¢)
- 264zpi (22.175c) (octave is identical to 194ed12 within 0.01 ¢)
- 152ed7
- 140ed6
- 126ed5 (octave is identical to 86edt within 0.1 ¢)
59edo
- 152ed6
- 294zpi (20.399c)
- 211ed12
- 295zpi (20.342c)
pure octaves 59edo octave is identical to 137ed5 within 0.05 ¢
- 13-limit WE (20.320c)
- 7-limit WE (20.301c)
- 166ed7
- 212ed12
- 296zpi (20.282c)
- 153ed6
64edo
- 179ed7 (octave is identical to 326zpi within 0.3 ¢)
- 165ed6
- 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
- 327zpi (18.767c)
- 11-limit WE (18.755c)
pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢
- 328zpi (18.721c)
- 180ed7
- 230ed12
- 149ed5
- Medium priority
118edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.00 | +0.13 | -0.26 | -2.72 | +0.00 | -0.52 | +0.13 | -2.17 | -0.26 | +3.54 |
Relative (%) | +0.0 | -2.6 | +0.0 | +1.2 | -2.6 | -26.8 | +0.0 | -5.1 | +1.2 | -21.3 | -2.6 | +34.8 | |
Steps (reduced) |
118 (0) |
187 (69) |
236 (0) |
274 (38) |
305 (69) |
331 (95) |
354 (0) |
374 (20) |
392 (38) |
408 (54) |
423 (69) |
437 (83) |
- 187edt
- 69edf
- 13-limit WE (10.171c)
- Best nearby ZPI(s)
13edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +36.5 | +0.0 | -17.1 | +36.5 | -45.7 | +0.0 | -19.3 | -17.1 | +2.5 | +36.5 | -9.8 |
Relative (%) | +0.0 | +39.5 | +0.0 | -18.5 | +39.5 | -49.6 | +0.0 | -20.9 | -18.5 | +2.7 | +39.5 | -10.6 | |
Steps (reduced) |
13 (0) |
21 (8) |
26 (0) |
30 (4) |
34 (8) |
36 (10) |
39 (0) |
41 (2) |
43 (4) |
45 (6) |
47 (8) |
48 (9) |
- Main: "13edo and optimal octave stretching"
- 2.5.11.13 WE (92.483c)
- 2.5.7.13 WE (92.804c)
- 2.3 WE (91.405c) (good for opposite 7 mapping)
- 38zpi (92.531c)
103edo (narrow down edonoi, choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -2.93 | +0.00 | -1.85 | -2.93 | -1.84 | +0.00 | +5.80 | -1.85 | -3.75 | -2.93 | -1.69 |
Relative (%) | +0.0 | -25.1 | +0.0 | -15.9 | -25.1 | -15.8 | +0.0 | +49.8 | -15.9 | -32.1 | -25.1 | -14.5 | |
Steps (reduced) |
103 (0) |
163 (60) |
206 (0) |
239 (33) |
266 (60) |
289 (83) |
309 (0) |
327 (18) |
342 (33) |
356 (47) |
369 (60) |
381 (72) |
- 163edt
- 239ed5
- 266ed6
- 289ed7
- 356ed11
- 369ed12
- 381ed13
- 421ed17
- 466ed23
- 13-limit WE (11.658c)
- Best nearby ZPI(s)
111edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.75 | +0.00 | +2.88 | +0.75 | +4.15 | +0.00 | +1.50 | +2.88 | +0.03 | +0.75 | +2.72 |
Relative (%) | +0.0 | +6.9 | +0.0 | +26.6 | +6.9 | +38.4 | +0.0 | +13.8 | +26.6 | +0.3 | +6.9 | +25.1 | |
Steps (reduced) |
111 (0) |
176 (65) |
222 (0) |
258 (36) |
287 (65) |
312 (90) |
333 (0) |
352 (19) |
369 (36) |
384 (51) |
398 (65) |
411 (78) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Low priority
104edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
125edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
145edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
152edo
- 241edt
- 13-limit WE (7.894c)
- Best nearby ZPI(s)
159edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
166edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
182edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
198edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
212edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
243edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
247edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Optional
25edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -2.3 | +18.0 | -8.8 | +0.0 | -11.9 | -2.3 | -23.3 | +18.0 | +23.5 |
Relative (%) | +0.0 | +37.6 | +0.0 | -4.8 | +37.6 | -18.4 | +0.0 | -24.8 | -4.8 | -48.6 | +37.6 | +48.9 | |
Steps (reduced) |
25 (0) |
40 (15) |
50 (0) |
58 (8) |
65 (15) |
70 (20) |
75 (0) |
79 (4) |
83 (8) |
86 (11) |
90 (15) |
93 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
26edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -9.6 | +0.0 | -17.1 | -9.6 | +0.4 | +0.0 | -19.3 | -17.1 | +2.5 | -9.6 | -9.8 |
Relative (%) | +0.0 | -20.9 | +0.0 | -37.0 | -20.9 | +0.9 | +0.0 | -41.8 | -37.0 | +5.5 | -20.9 | -21.1 | |
Steps (reduced) |
26 (0) |
41 (15) |
52 (0) |
60 (8) |
67 (15) |
73 (21) |
78 (0) |
82 (4) |
86 (8) |
90 (12) |
93 (15) |
96 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
29edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +1.5 | +0.0 | -13.9 | +1.5 | -17.1 | +0.0 | +3.0 | -13.9 | -13.4 | +1.5 | -12.9 |
Relative (%) | +0.0 | +3.6 | +0.0 | -33.6 | +3.6 | -41.3 | +0.0 | +7.2 | -33.6 | -32.4 | +3.6 | -31.3 | |
Steps (reduced) |
29 (0) |
46 (17) |
58 (0) |
67 (9) |
75 (17) |
81 (23) |
87 (0) |
92 (5) |
96 (9) |
100 (13) |
104 (17) |
107 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
30edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | -3.9 | +13.7 | +8.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +45.1 | +0.0 | +34.2 | +45.1 | -22.1 | +0.0 | -9.8 | +34.2 | +21.7 | +45.1 | -1.3 | |
Steps (reduced) |
30 (0) |
48 (18) |
60 (0) |
70 (10) |
78 (18) |
84 (24) |
90 (0) |
95 (5) |
100 (10) |
104 (14) |
108 (18) |
111 (21) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
34edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +3.9 | +0.0 | +1.9 | +3.9 | -15.9 | +0.0 | +7.9 | +1.9 | +13.4 | +3.9 | +6.5 |
Relative (%) | +0.0 | +11.1 | +0.0 | +5.4 | +11.1 | -45.0 | +0.0 | +22.3 | +5.4 | +37.9 | +11.1 | +18.5 | |
Steps (reduced) |
34 (0) |
54 (20) |
68 (0) |
79 (11) |
88 (20) |
95 (27) |
102 (0) |
108 (6) |
113 (11) |
118 (16) |
122 (20) |
126 (24) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
35edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -9.2 | -16.2 | -8.8 | +0.0 | +1.8 | -9.2 | -2.7 | -16.2 | +16.6 |
Relative (%) | +0.0 | -47.4 | +0.0 | -26.7 | -47.4 | -25.7 | +0.0 | +5.3 | -26.7 | -8.0 | -47.4 | +48.5 | |
Steps (reduced) |
35 (0) |
55 (20) |
70 (0) |
81 (11) |
90 (20) |
98 (28) |
105 (0) |
111 (6) |
116 (11) |
121 (16) |
125 (20) |
130 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
36edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -2.2 | +0.0 | -3.9 | +13.7 | +15.3 | -2.0 | -7.2 |
Relative (%) | +0.0 | -5.9 | +0.0 | +41.1 | -5.9 | -6.5 | +0.0 | -11.7 | +41.1 | +46.0 | -5.9 | -21.6 | |
Steps (reduced) |
36 (0) |
57 (21) |
72 (0) |
84 (12) |
93 (21) |
101 (29) |
108 (0) |
114 (6) |
120 (12) |
125 (17) |
129 (21) |
133 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
37edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +11.6 | +0.0 | +2.9 | +11.6 | +4.1 | +0.0 | -9.3 | +2.9 | +0.0 | +11.6 | +2.7 |
Relative (%) | +0.0 | +35.6 | +0.0 | +8.9 | +35.6 | +12.8 | +0.0 | -28.7 | +8.9 | +0.1 | +35.6 | +8.4 | |
Steps (reduced) |
37 (0) |
59 (22) |
74 (0) |
86 (12) |
96 (22) |
104 (30) |
111 (0) |
117 (6) |
123 (12) |
128 (17) |
133 (22) |
137 (26) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
9edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -35.3 | +0.0 | +13.7 | -35.3 | -35.5 | +0.0 | +62.8 | +13.7 | -18.0 | -35.3 | -40.5 |
Relative (%) | +0.0 | -26.5 | +0.0 | +10.3 | -26.5 | -26.6 | +0.0 | +47.1 | +10.3 | -13.5 | -26.5 | -30.4 | |
Steps (reduced) |
9 (0) |
14 (5) |
18 (0) |
21 (3) |
23 (5) |
25 (7) |
27 (0) |
29 (2) |
30 (3) |
31 (4) |
32 (5) |
33 (6) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
10edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | +36.1 | -26.3 | +48.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +15.0 | +0.0 | -21.9 | +15.0 | -7.4 | +0.0 | +30.1 | -21.9 | +40.6 | +15.0 | -0.4 | |
Steps (reduced) |
10 (0) |
16 (6) |
20 (0) |
23 (3) |
26 (6) |
28 (8) |
30 (0) |
32 (2) |
33 (3) |
35 (5) |
36 (6) |
37 (7) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
11edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -47.4 | +0.0 | +50.0 | -47.4 | +13.0 | +0.0 | +14.3 | +50.0 | -5.9 | -47.4 | +32.2 |
Relative (%) | +0.0 | -43.5 | +0.0 | +45.9 | -43.5 | +11.9 | +0.0 | +13.1 | +45.9 | -5.4 | -43.5 | +29.5 | |
Steps (reduced) |
11 (0) |
17 (6) |
22 (0) |
26 (4) |
28 (6) |
31 (9) |
33 (0) |
35 (2) |
37 (4) |
38 (5) |
39 (6) |
41 (8) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
15edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | +36.1 | +13.7 | +8.7 | +18.0 | +39.5 |
Relative (%) | +0.0 | +22.6 | +0.0 | +17.1 | +22.6 | -11.0 | +0.0 | +45.1 | +17.1 | +10.9 | +22.6 | +49.3 | |
Steps (reduced) |
15 (0) |
24 (9) |
30 (0) |
35 (5) |
39 (9) |
42 (12) |
45 (0) |
48 (3) |
50 (5) |
52 (7) |
54 (9) |
56 (11) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
18edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +31.4 | +0.0 | +13.7 | +31.4 | +31.2 | +0.0 | -3.9 | +13.7 | -18.0 | +31.4 | +26.1 |
Relative (%) | +0.0 | +47.1 | +0.0 | +20.5 | +47.1 | +46.8 | +0.0 | -5.9 | +20.5 | -27.0 | +47.1 | +39.2 | |
Steps (reduced) |
18 (0) |
29 (11) |
36 (0) |
42 (6) |
47 (11) |
51 (15) |
54 (0) |
57 (3) |
60 (6) |
62 (8) |
65 (11) |
67 (13) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
48edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | -11.3 | -2.0 | +6.2 | +0.0 | -3.9 | -11.3 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -7.8 | +0.0 | -45.3 | -7.8 | +24.7 | +0.0 | -15.6 | -45.3 | -5.3 | -7.8 | +37.9 | |
Steps (reduced) |
48 (0) |
76 (28) |
96 (0) |
111 (15) |
124 (28) |
135 (39) |
144 (0) |
152 (8) |
159 (15) |
166 (22) |
172 (28) |
178 (34) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
5edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | +18 | +0 | +94 | +18 | -9 | +0 | +36 | +94 | -71 | +18 | +119 |
Relative (%) | +0.0 | +7.5 | +0.0 | +39.0 | +7.5 | -3.7 | +0.0 | +15.0 | +39.0 | -29.7 | +7.5 | +49.8 | |
Steps (reduced) |
5 (0) |
8 (3) |
10 (0) |
12 (2) |
13 (3) |
14 (4) |
15 (0) |
16 (1) |
17 (2) |
17 (2) |
18 (3) |
19 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
6edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +98.0 | +0.0 | +13.7 | +98.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | +98.0 | -40.5 |
Relative (%) | +0.0 | +49.0 | +0.0 | +6.8 | +49.0 | +15.6 | +0.0 | -2.0 | +6.8 | +24.3 | +49.0 | -20.3 | |
Steps (reduced) |
6 (0) |
10 (4) |
12 (0) |
14 (2) |
16 (4) |
17 (5) |
18 (0) |
19 (1) |
20 (2) |
21 (3) |
22 (4) |
22 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
20edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | -23.9 | -26.3 | -11.3 | +18.0 | -0.5 |
Relative (%) | +0.0 | +30.1 | +0.0 | -43.9 | +30.1 | -14.7 | +0.0 | -39.9 | -43.9 | -18.9 | +30.1 | -0.9 | |
Steps (reduced) |
20 (0) |
32 (12) |
40 (0) |
46 (6) |
52 (12) |
56 (16) |
60 (0) |
63 (3) |
66 (6) |
69 (9) |
72 (12) |
74 (14) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
24edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -18.8 | +0.0 | -3.9 | +13.7 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -3.9 | +0.0 | +27.4 | -3.9 | -37.7 | +0.0 | -7.8 | +27.4 | -2.6 | -3.9 | +18.9 | |
Steps (reduced) |
24 (0) |
38 (14) |
48 (0) |
56 (8) |
62 (14) |
67 (19) |
72 (0) |
76 (4) |
80 (8) |
83 (11) |
86 (14) |
89 (17) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
28edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -0.6 | -16.2 | +16.9 | +0.0 | +10.4 | -0.6 | +5.8 | -16.2 | +16.6 |
Relative (%) | +0.0 | -37.9 | +0.0 | -1.4 | -37.9 | +39.4 | +0.0 | +24.2 | -1.4 | +13.6 | -37.9 | +38.8 | |
Steps (reduced) |
28 (0) |
44 (16) |
56 (0) |
65 (9) |
72 (16) |
79 (23) |
84 (0) |
89 (5) |
93 (9) |
97 (13) |
100 (16) |
104 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)