Lumatone mapping for 15edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
Yourmusic Productions (talk | contribs)
Add layout to go with new description.
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
There are several conceivable ways to map [[15edo]] onto the [[Lumatone]] keyboard. However, as it has multiple small rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. Instead, there is the [[Porcupine]] mapping.
{{Lumatone mapping intro}} You can use the extremely flat 8\15 fifth of 640¢. This layout preserves the location of the octave, and places the down-fifth where the fifth usually is.
{{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=-1}}


{{Lumatone EDO mapping|n=15|start=12|xstep=1|ystep=4}}


The [[Blackwood]] mapping
This makes fingerings for most simple chords awkward though. The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings.
 
== [[Porcupine]] ==
{{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=1}}
 
== [[Blackwood]] ==
{{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}}
{{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}}


 
== [[Hanson]] ==
Or the [[Hanson]] mapping.
{{Lumatone EDO mapping|n=15|start=9|xstep=4|ystep=-1}}
{{Lumatone EDO mapping|n=15|start=9|xstep=4|ystep=-1}}


{{Navbox Lumatone}}
{{Navbox Lumatone}}

Latest revision as of 09:47, 5 June 2025

There are many conceivable ways to map 15edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. You can use the extremely flat 8\15 fifth of 640¢. This layout preserves the location of the octave, and places the down-fifth where the fifth usually is.

12
13
2
3
4
5
6
6
7
8
9
10
11
12
13
11
12
13
14
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10
11
12
13
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
9
10
11
12
13
14
0
1
2
3
4
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2

This makes fingerings for most simple chords awkward though. The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings.

Porcupine

0
2
3
5
7
9
11
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
8
10
12
14
1
3
5
7
9
11
13
0
2
4
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
0
2
4
6
8
10
12
14
1
3
5
7
9
11
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
10
12
14
1
3
2
4

Blackwood

13
1
0
3
6
9
12
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
12
0
3
6
9
12
0
3
8
11
14
2
5
1
4

Hanson

9
13
12
1
5
9
13
11
0
4
8
12
1
5
9
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
12
1
5
9
13
2
6
10
14
3
7
11
0
4
12
1
5
9
13
2
6
10
14
3
7
8
12
1
5
9
13
2
6
8
12
1
5
9
4
8


ViewTalkEditLumatone mappings 
12edo13edo14edoLumatone mapping for 15edo16edo17edo18edo