457edo: Difference between revisions
Jump to navigation
Jump to search
→Music: +music |
m changed EDO intro to ED intro |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
457edo is [[consistent]] to the [[7-odd-limit]], but the error of [[harmonic]] [[3/1|3]] is quite large. | 457edo is [[consistent]] to the [[7-odd-limit]], but the error of [[harmonic]] [[3/1|3]] is quite large. As an equal temperament, it [[tempering out|tempers out]] [[19683/19600]] and [[65625/65536]] in the [[7-limit]]; [[540/539]], [[8019/8000]], and 43923/43904 in the [[11-limit]]. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 9: | Line 9: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
457edo is the 88th [[prime edo]]. | 457edo is the 88th [[prime edo]]. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
Line 25: | Line 26: | ||
| {{monzo| -724 457 }} | | {{monzo| -724 457 }} | ||
| {{mapping| 457 724 }} | | {{mapping| 457 724 }} | ||
| 0.2716 | | +0.2716 | ||
| 0.2716 | | 0.2716 | ||
| 10.34 | | 10.34 | ||
Line 32: | Line 33: | ||
| {{monzo| -36 11 8 }}, {{monzo| -5 31 -19 }} | | {{monzo| -36 11 8 }}, {{monzo| -5 31 -19 }} | ||
| {{mapping| 457 724 1061 }} | | {{mapping| 457 724 1061 }} | ||
| 0.2267 | | +0.2267 | ||
| 0.2307 | | 0.2307 | ||
| 8.79 | | 8.79 | ||
Line 39: | Line 40: | ||
| 19683/19600, 65625/65536, 7381125/7340032 | | 19683/19600, 65625/65536, 7381125/7340032 | ||
| {{mapping| 457 724 1061 1283 }} | | {{mapping| 457 724 1061 1283 }} | ||
| 0.1609 | | +0.1609 | ||
| 0.2300 | | 0.2300 | ||
| 8.76 | | 8.76 | ||
Line 46: | Line 47: | ||
| 540/539, 8019/8000, 19683/19600, 43923/43904 | | 540/539, 8019/8000, 19683/19600, 43923/43904 | ||
| {{mapping| 457 724 1061 1283 1581 }} | | {{mapping| 457 724 1061 1283 1581 }} | ||
| 0.1227 | | +0.1227 | ||
| 0.2194 | | 0.2194 | ||
| 8.36 | | 8.36 | ||
Line 53: | Line 54: | ||
| 540/539, 1716/1715, 4225/4224, 41067/40960, 43940/43923 | | 540/539, 1716/1715, 4225/4224, 41067/40960, 43940/43923 | ||
| {{mapping| 457 724 1061 1283 1581 1691 }} | | {{mapping| 457 724 1061 1283 1581 1691 }} | ||
| 0.1142 | | +0.1142 | ||
| 0.2012 | | 0.2012 | ||
| 7.66 | | 7.66 | ||
Line 60: | Line 61: | ||
| 936/935, 1089/1088, 1275/1274, 1575/1573, 2601/2600, 4225/4224 | | 936/935, 1089/1088, 1275/1274, 1575/1573, 2601/2600, 4225/4224 | ||
| {{mapping| 457 724 1061 1283 1581 1691 1868 }} | | {{mapping| 457 724 1061 1283 1581 1691 1868 }} | ||
| 0.0952 | | +0.0952 | ||
| 0.1920 | | 0.1920 | ||
| 7.31 | | 7.31 | ||
Line 67: | Line 68: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 92: | Line 94: | ||
| [[Tritriple]] | | [[Tritriple]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Music == | == Music == | ||
Line 98: | Line 100: | ||
* "Less and Less" from ''Take Advantage'' (2024) – [https://open.spotify.com/track/5w3K1Q6VhCkUPMXmuh5pVt Spotify] | [https://francium223.bandcamp.com/track/less-and-less Bandcamp] | [https://www.youtube.com/watch?v=y4MGhHE20b4 YouTube] | * "Less and Less" from ''Take Advantage'' (2024) – [https://open.spotify.com/track/5w3K1Q6VhCkUPMXmuh5pVt Spotify] | [https://francium223.bandcamp.com/track/less-and-less Bandcamp] | [https://www.youtube.com/watch?v=y4MGhHE20b4 YouTube] | ||
* "Porcelain Stoneware" from ''Scoop'' (2024) – [https://open.spotify.com/track/055lRdMBKr37MU8HQqlvus Spotify] | [https://francium223.bandcamp.com/track/porcelain-stoneware Bandcamp] | [https://www.youtube.com/watch?v=bzycN6PYMQQ YouTube] | * "Porcelain Stoneware" from ''Scoop'' (2024) – [https://open.spotify.com/track/055lRdMBKr37MU8HQqlvus Spotify] | [https://francium223.bandcamp.com/track/porcelain-stoneware Bandcamp] | [https://www.youtube.com/watch?v=bzycN6PYMQQ YouTube] | ||
[[Category:Listen]] |
Latest revision as of 06:09, 21 February 2025
← 456edo | 457edo | 458edo → |
457 equal divisions of the octave (abbreviated 457edo or 457ed2), also called 457-tone equal temperament (457tet) or 457 equal temperament (457et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 457 equal parts of about 2.63 ¢ each. Each step represents a frequency ratio of 21/457, or the 457th root of 2.
Theory
457edo is consistent to the 7-odd-limit, but the error of harmonic 3 is quite large. As an equal temperament, it tempers out 19683/19600 and 65625/65536 in the 7-limit; 540/539, 8019/8000, and 43923/43904 in the 11-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.86 | -0.32 | +0.10 | +0.90 | +0.10 | -0.27 | -1.18 | +0.08 | -0.80 | -0.76 | -0.70 |
Relative (%) | -32.8 | -12.1 | +3.9 | +34.4 | +4.0 | -10.1 | -44.9 | +2.9 | -30.3 | -28.9 | -26.8 | |
Steps (reduced) |
724 (267) |
1061 (147) |
1283 (369) |
1449 (78) |
1581 (210) |
1691 (320) |
1785 (414) |
1868 (40) |
1941 (113) |
2007 (179) |
2067 (239) |
Subsets and supersets
457edo is the 88th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-724 457⟩ | [⟨457 724]] | +0.2716 | 0.2716 | 10.34 |
2.3.5 | [-36 11 8⟩, [-5 31 -19⟩ | [⟨457 724 1061]] | +0.2267 | 0.2307 | 8.79 |
2.3.5.7 | 19683/19600, 65625/65536, 7381125/7340032 | [⟨457 724 1061 1283]] | +0.1609 | 0.2300 | 8.76 |
2.3.5.7.11 | 540/539, 8019/8000, 19683/19600, 43923/43904 | [⟨457 724 1061 1283 1581]] | +0.1227 | 0.2194 | 8.36 |
2.3.5.7.11.13 | 540/539, 1716/1715, 4225/4224, 41067/40960, 43940/43923 | [⟨457 724 1061 1283 1581 1691]] | +0.1142 | 0.2012 | 7.66 |
2.3.5.7.11.13.17 | 936/935, 1089/1088, 1275/1274, 1575/1573, 2601/2600, 4225/4224 | [⟨457 724 1061 1283 1581 1691 1868]] | +0.0952 | 0.1920 | 7.31 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 10\457 | 26.258 | 49/48 | Sfourth |
1 | 136\457 | 357.11 | 49/40 | Dodifo |
1 | 213\457 | 559.30 | 864/625 | Tritriple |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct