1178edo: Difference between revisions
if there is a music plz add to listen |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
1178edo is a very strong 19-limit system, and is a [[zeta edo|zeta peak, integral and gap edo]]. It is also [[consistency|distinctly consistent]] through to the [[21-odd-limit]], and is the first edo past [[742edo|742]] with a lower 19-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. A basis for its 19-limit [[comma]]s | 1178edo is a very strong 19-limit system, and is a [[zeta edo|zeta peak, integral and gap edo]]. It is also [[consistency|distinctly consistent]] through to the [[21-odd-limit]], and is the first edo past [[742edo|742]] with a lower 19-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. A [[comma basis|basis]] for its 19-limit [[comma]]s consists of [[2500/2499]], [[3025/3024]], 3250/3249, 4200/4199, [[4225/4224]], [[4375/4374]], and [[4914/4913]]. It [[support]]s and provides a great tuning for [[semihemienneadecal]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 9: | Line 9: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 1178 | Since 1178 factors into {{factorization|1178}}, 1178edo is notable for containing both 19 and 31. Its subset edos are {{EDOs| 2, 19, 31, 38, 62, and 589 }}. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |- | ||
|2.3 | ! rowspan="2" | [[Subgroup]] | ||
|{{monzo|-1867 1178}} | ! rowspan="2" | [[Comma list]] | ||
|{{ | ! rowspan="2" | [[Mapping]] | ||
| 0.0276 | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -1867 1178 }} | |||
| {{mapping| 1178 1867 }} | |||
| +0.0276 | |||
| 0.0276 | | 0.0276 | ||
| 2.71 | | 2.71 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|-14 -19-19}}, {{monzo|-99 61 1}} | | {{monzo| -14 -19-19 }}, {{monzo| -99 61 1 }} | ||
|{{ | | {{mapping| 1178 1867 2735 }} | ||
| 0.0522 | | +0.0522 | ||
| 0.0415 | | 0.0415 | ||
| 4.07 | | 4.07 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|4375/4374, 703125/702464, | | 4375/4374, 703125/702464, {{monzo| -52 -5 -2 23 }} | ||
|{{ | | {{mapping| 1178 1867 2735 3307 }} | ||
| 0.0450 | | +0.0450 | ||
| 0.0380 | | 0.0380 | ||
| 3.73 | | 3.73 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|3025/3024, 4375/4374, | | 3025/3024, 4375/4374, 234375/234256, {{monzo| -27 3 -4 10 1 }} | ||
|{{ | | {{mapping| 1178 1867 2735 3307 4075 }} | ||
| 0.0484 | | +0.0484 | ||
| 0.0347 | | 0.0347 | ||
| 3.41 | | 3.41 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|3025/3024, 4225/4224, | | 3025/3024, 4225/4224, 4375/4374, 78125/78078, 1664000/1663893 | ||
|{{ | | {{mapping| 1178 1867 2735 3307 4075 4359 }} | ||
| 0.0457 | | +0.0457 | ||
| 0.0322 | | 0.0322 | ||
| 3.16 | | 3.16 | ||
|- | |- | ||
|2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
|3025/3024, 4225/4224, | | 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872 | ||
|{{ | | {{mapping| 1178 1867 2735 3307 4075 4359 4815 }} | ||
| 0.0403 | | +0.0403 | ||
| 0.0327 | | 0.0327 | ||
| 3.21 | | 3.21 | ||
|- | |- | ||
|2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| | | 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913 | ||
|{{ | | {{mapping| 1178 1867 2735 3307 4075 4359 4815 5004 }} | ||
| 0.0370 | | +0.0370 | ||
| 0.0318 | | 0.0318 | ||
| 3.12 | | 3.12 | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|337\1178 | | 337\1178 | ||
|343.29 | | 343.29 | ||
|8000/6561 | | 8000/6561 | ||
|[[Raider]] | | [[Raider]] | ||
|- | |||
| 19 | |||
| 489\1178<br />(7\1178) | |||
| 498.13<br />(7.13) | |||
| 4/3<br />(225/224) | |||
| [[Enneadecal]] | |||
|- | |- | ||
| | | 31 | ||
| | | 581\1178<br />(11\1178) | ||
| | | 591.851<br />(11.205) | ||
| | | 936/665<br />(?) | ||
|[[ | | [[31st-octave temperaments#217 & 1178|217 & 1178]] | ||
|- | |- | ||
|38 | | 38 | ||
|489\1178<br>(7\1178) | | 260\1178<br />(12\1178) | ||
|498.13<br>(7.13) | | 264.86<br />(12.22) | ||
|4/3<br>(225/224) | | 500/429<br />(144/143) | ||
|[[Hemienneadecal]] | | [[Semihemienneadecal]] | ||
|- | |||
| 38 | |||
| 489\1178<br />(7\1178) | |||
| 498.13<br />(7.13) | |||
| 4/3<br />(225/224) | |||
| [[Hemienneadecal]] | |||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | == Music == | ||
; | ; [[Eliora]] | ||
* [https://www.youtube.com/watch?v=c9e7MTsIDc4 Listening] (2023) | * [https://www.youtube.com/watch?v=c9e7MTsIDc4 ''Listening''] (2023) – {{nowrap|217 & 1178}} and enneadecal in 1178edo tuning | ||
[[Category:Enneadecal]] | [[Category:Enneadecal]] | ||
[[Category:Hemienneadecal]] | [[Category:Hemienneadecal]] | ||
[[Category:Listen]] | |||
[[Category:Semihemienneadecal]] | [[Category:Semihemienneadecal]] | ||
Latest revision as of 16:53, 18 February 2025
← 1177edo | 1178edo | 1179edo → |
1178 equal divisions of the octave (abbreviated 1178edo or 1178ed2), also called 1178-tone equal temperament (1178tet) or 1178 equal temperament (1178et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1178 equal parts of about 1.02 ¢ each. Each step represents a frequency ratio of 21/1178, or the 1178th root of 2.
Theory
1178edo is a very strong 19-limit system, and is a zeta peak, integral and gap edo. It is also distinctly consistent through to the 21-odd-limit, and is the first edo past 742 with a lower 19-limit relative error. A basis for its 19-limit commas consists of 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, and 4914/4913. It supports and provides a great tuning for semihemienneadecal.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.087 | -0.236 | -0.065 | -0.214 | -0.120 | -0.032 | -0.060 | +0.249 | +0.304 | -0.044 |
Relative (%) | +0.0 | -8.6 | -23.1 | -6.4 | -21.0 | -11.8 | -3.1 | -5.9 | +24.4 | +29.8 | -4.3 | |
Steps (reduced) |
1178 (0) |
1867 (689) |
2735 (379) |
3307 (951) |
4075 (541) |
4359 (825) |
4815 (103) |
5004 (292) |
5329 (617) |
5723 (1011) |
5836 (1124) |
Subsets and supersets
Since 1178 factors into 2 × 19 × 31, 1178edo is notable for containing both 19 and 31. Its subset edos are 2, 19, 31, 38, 62, and 589.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-1867 1178⟩ | [⟨1178 1867]] | +0.0276 | 0.0276 | 2.71 |
2.3.5 | [-14 -19-19⟩, [-99 61 1⟩ | [⟨1178 1867 2735]] | +0.0522 | 0.0415 | 4.07 |
2.3.5.7 | 4375/4374, 703125/702464, [-52 -5 -2 23⟩ | [⟨1178 1867 2735 3307]] | +0.0450 | 0.0380 | 3.73 |
2.3.5.7.11 | 3025/3024, 4375/4374, 234375/234256, [-27 3 -4 10 1⟩ | [⟨1178 1867 2735 3307 4075]] | +0.0484 | 0.0347 | 3.41 |
2.3.5.7.11.13 | 3025/3024, 4225/4224, 4375/4374, 78125/78078, 1664000/1663893 | [⟨1178 1867 2735 3307 4075 4359]] | +0.0457 | 0.0322 | 3.16 |
2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872 | [⟨1178 1867 2735 3307 4075 4359 4815]] | +0.0403 | 0.0327 | 3.21 |
2.3.5.7.11.13.17.19 | 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913 | [⟨1178 1867 2735 3307 4075 4359 4815 5004]] | +0.0370 | 0.0318 | 3.12 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 337\1178 | 343.29 | 8000/6561 | Raider |
19 | 489\1178 (7\1178) |
498.13 (7.13) |
4/3 (225/224) |
Enneadecal |
31 | 581\1178 (11\1178) |
591.851 (11.205) |
936/665 (?) |
217 & 1178 |
38 | 260\1178 (12\1178) |
264.86 (12.22) |
500/429 (144/143) |
Semihemienneadecal |
38 | 489\1178 (7\1178) |
498.13 (7.13) |
4/3 (225/224) |
Hemienneadecal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Music
- Listening (2023) – 217 & 1178 and enneadecal in 1178edo tuning