71edt: Difference between revisions
Jump to navigation
Jump to search
m Infobox ET added |
m Removing from Category:Edonoi using Cat-a-lot |
||
(8 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
'''71EDT''' is the [[Edt|equal division of the third harmonic]] into 71 parts of 26.7881 [[cent|cents]] each, corresponding to 44.7960 [[edo]] (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val). | '''71EDT''' is the [[Edt|equal division of the third harmonic]] into 71 parts of 26.7881 [[cent|cents]] each, corresponding to 44.7960 [[edo]] (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val). | ||
71EDT is the 13th [[ | 71EDT is the 13th [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak EDT]]. | ||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 71 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 71 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} | |||
== Intervals == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Degree | ||
! | ! [[Cent]]s | ||
! | ! [[Hekt]]s | ||
! | ! Corresponding<br />JI intervals | ||
! | ! Comments | ||
|- | |- | ||
! colspan="3" | 0 | ! colspan="3" | 0 | ||
| '''exact [[1/1]]''' | |||
| | |||
|- | |- | ||
| 1 | |||
| 26.7881 | |||
|18.3099 | | 18.3099 | ||
| 66/65 | |||
| | |||
|- | |- | ||
| 2 | |||
| 53.5762 | |||
|36.6197 | | 36.6197 | ||
| 65/63 | |||
| | |||
|- | |- | ||
| 3 | |||
| 80.3643 | |||
|54.9296 | | 54.9296 | ||
| [[22/21]] | |||
| | |||
|- | |- | ||
| 4 | |||
| 107.1524 | |||
|73.2394 | | 73.2394 | ||
| 117/110 | |||
| | |||
|- | |- | ||
| 5 | |||
| 133.9405 | |||
|91.5493 | | 91.5493 | ||
| [[27/25]] | |||
| | |||
|- | |- | ||
| 6 | |||
| 160.7286 | |||
|109.85915 | | 109.85915 | ||
| 169/154 | |||
| | |||
|- | |- | ||
| 7 | |||
| 187.5167 | |||
|128.169 | | 128.169 | ||
| 39/35 | |||
| | |||
|- | |- | ||
| 8 | |||
| 214.3048 | |||
|146.4789 | | 146.4789 | ||
| 147/130, 198/175 | |||
| | |||
|- | |- | ||
| 9 | |||
| 241.0929 | |||
|164.7887 | | 164.7887 | ||
| 169/147 | |||
| | |||
|- | |- | ||
| 10 | |||
| 267.8810 | |||
|183.0986 | | 183.0986 | ||
| [[7/6]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 294.6691 | |||
|201.40845 | | 201.40845 | ||
| 77/65 | |||
| | |||
|- | |- | ||
| 12 | |||
| 321.4572 | |||
|219.7183 | | 219.7183 | ||
| 65/54 | |||
| | |||
|- | |- | ||
| 13 | |||
| 348.2453 | |||
|238.0282 | | 238.0282 | ||
| [[11/9]] | |||
| | |||
|- | |- | ||
| 14 | |||
| 375.0334 | |||
|256.338 | | 256.338 | ||
| 273/220 | |||
| | |||
|- | |- | ||
| 15 | |||
| 401.8215 | |||
|274.6479 | | 274.6479 | ||
| 63/50 | |||
| | |||
|- | |- | ||
| 16 | |||
| 428.6096 | |||
|292.95775 | | 292.95775 | ||
| 169/132 | |||
| | |||
|- | |- | ||
| 17 | |||
| 455.3977 | |||
|311.2676 | | 311.2676 | ||
| [[13/10]] | |||
| | |||
|- | |- | ||
| 18 | |||
| 482.1858 | |||
|329.5775 | | 329.5775 | ||
| 33/25 | |||
| | |||
|- | |- | ||
| 19 | |||
| 508.9739 | |||
|347.8873 | | 347.8873 | ||
| 169/126 | |||
| | |||
|- | |- | ||
| 20 | |||
| 535.7620 | |||
|366.1972 | | 366.1972 | ||
| [[15/11]] | |||
| | |||
|- | |- | ||
| 21 | |||
| 562.5501 | |||
|384.507 | | 384.507 | ||
| [[18/13]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 589.3382 | |||
|402.8169 | | 402.8169 | ||
| ([[45/32]]) | |||
| | |||
|- | |- | ||
| 23 | |||
| 616.1263 | |||
|421.1268 | | 421.1268 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 642.9144 | |||
|439.4366 | | 439.4366 | ||
| 132/91 | |||
| | |||
|- | |- | ||
| 25 | |||
| 669.7025 | |||
|457.7465 | | 457.7465 | ||
| 22/15 | |||
| | |||
|- | |- | ||
| 26 | |||
| 696.4906 | |||
|476.0563 | | 476.0563 | ||
| 486/325, 220/147 | |||
| pseudo-[[3/2]] | |||
|- | |- | ||
| 27 | |||
| 723.2787 | |||
|494.3662 | | 494.3662 | ||
| 50/33 | |||
| | |||
|- | |- | ||
| 28 | |||
| 750.0668 | |||
|512.6761 | | 512.6761 | ||
| 54/35 | |||
| | |||
|- | |- | ||
| 29 | |||
| 776.8549 | |||
|530.9859 | | 530.9859 | ||
| 264/169 | |||
| | |||
|- | |- | ||
| 30 | |||
| 803.643 | |||
|549.2958 | | 549.2958 | ||
| 35/22 | |||
| | |||
|- | |- | ||
| 31 | |||
| 830.4311 | |||
|567.6056 | | 567.6056 | ||
| [[21/13]] | |||
| | |||
|- | |- | ||
| 32 | |||
| 857.2192 | |||
|585.9155 | | 585.9155 | ||
| 18/11 | |||
| | |||
|- | |- | ||
| 33 | |||
| 884.0073 | |||
|604.22535 | | 604.22535 | ||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 34 | |||
| 910.7954 | |||
|622.5352 | | 622.5352 | ||
| [[22/13]] | |||
| | |||
|- | |- | ||
| 35 | |||
| 937.5835 | |||
|640.8451 | | 640.8451 | ||
| 12/7 | |||
| | |||
|- | |- | ||
| 36 | |||
| 964.3715 | |||
|659.1549 | | 659.1549 | ||
| 7/4 | |||
| | |||
|- | |- | ||
| 37 | |||
| 991.1596 | |||
|677.4648 | | 677.4648 | ||
| 39/22 | |||
| | |||
|- | |- | ||
| 38 | |||
| 1017.9477 | |||
|695.77465 | | 695.77465 | ||
| [[9/5]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 1044.7358 | |||
|714.0845 | | 714.0845 | ||
| 11/6 | |||
| | |||
|- | |- | ||
| 40 | |||
| 1071.5239 | |||
|732.3944 | | 732.3944 | ||
| [[13/7]] | |||
| | |||
|- | |- | ||
| 41 | |||
| 1098.312 | |||
|750.7042 | | 750.7042 | ||
| 66/35 | |||
| | |||
|- | |- | ||
| 42 | |||
| 1125.1001 | |||
|769.0141 | | 769.0141 | ||
| 21/11 | |||
| | |||
|- | |- | ||
| 43 | |||
| 1151.8882 | |||
|787.3239 | | 787.3239 | ||
| 35/18 | |||
| | |||
|- | |- | ||
| 44 | |||
| 1178.6763 | |||
|805.6338 | | 805.6338 | ||
| 22/13 | |||
| | |||
|- | |- | ||
| 45 | |||
| 1205.4644 | |||
|823.9437 | | 823.9437 | ||
| 441/220, 325/162 | |||
| pseudo-[[octave]] | |||
|- | |- | ||
| 46 | |||
| 1232.2525 | |||
|842.2535 | | 842.2535 | ||
| 45/22 | |||
| | |||
|- | |- | ||
| 47 | |||
| 1259.0406 | |||
|860.5634 | | 860.5634 | ||
| 91/44 | |||
| | |||
|- | |- | ||
| 48 | |||
| 1285.8287 | |||
|878.8732 | | 878.8732 | ||
| [[21/20|21/10]] | |||
| | |||
|- | |- | ||
| 49 | |||
| 1312.6168 | |||
|897.1831 | | 897.1831 | ||
| ([[16/15|32/15]]) | |||
| | |||
|- | |- | ||
| 50 | |||
| 1339.4049 | |||
|915.493 | | 915.493 | ||
| [[13/6]] | |||
| | |||
|- | |- | ||
| 51 | |||
| 1366.193 | |||
|933.8028 | | 933.8028 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 52 | |||
| 1392.9811 | |||
|952.1127 | | 952.1127 | ||
| 378/169 | |||
| | |||
|- | |- | ||
| 53 | |||
| 1419.7692 | |||
|970.4225 | | 970.4225 | ||
| [[25/11]] | |||
| | |||
|- | |- | ||
| 54 | |||
| 1446.5573 | |||
|988.7324 | | 988.7324 | ||
| [[15/13|30/13]] | |||
| | |||
|- | |- | ||
| 55 | |||
| 1473.3454 | |||
|1007.04225 | | 1007.04225 | ||
| 396/169 | |||
| | |||
|- | |- | ||
| 56 | |||
| 1500.1335 | |||
|1025.3521 | | 1025.3521 | ||
| 50/21 | |||
| | |||
|- | |- | ||
| 57 | |||
| 1526.9216 | |||
|1043.662 | | 1043.662 | ||
| 220/91 | |||
| | |||
|- | |- | ||
| 58 | |||
| 1553.7097 | |||
|1061.9718 | | 1061.9718 | ||
| [[27/22|27/11]] | |||
| | |||
|- | |- | ||
| 59 | |||
| 1580.4978 | |||
|1080.2817 | | 1080.2817 | ||
| 162/65 | |||
| | |||
|- | |- | ||
| 60 | |||
| 1607.2859 | |||
|1098.59155 | | 1098.59155 | ||
| 195/77 | |||
| | |||
|- | |- | ||
| 61 | |||
| 1634.0740 | |||
|1161.9014 | | 1161.9014 | ||
| [[9/7|18/7]] | |||
| | |||
|- | |- | ||
| 62 | |||
| 1660.8621 | |||
|1135.2113 | | 1135.2113 | ||
| 441/169 | |||
| | |||
|- | |- | ||
| 63 | |||
| 1687.6502 | |||
|1153.5211 | | 1153.5211 | ||
| 175/66, 130/49 | |||
| | |||
|- | |- | ||
| 64 | |||
| 1714.4383 | |||
|1171.831 | | 1171.831 | ||
| 35/13, 132/49 | |||
| | |||
|- | |- | ||
| 65 | |||
| 1741.2264 | |||
|1190.14085 | | 1190.14085 | ||
| 462/169 | |||
| | |||
|- | |- | ||
| 66 | |||
| 1768.0145 | |||
|1208.4507 | | 1208.4507 | ||
| [[25/18|25/9]] | |||
| | |||
|- | |- | ||
| 67 | |||
| 1794.8026 | |||
|1226.7606 | | 1226.7606 | ||
| 110/39 | |||
| | |||
|- | |- | ||
| 68 | |||
| 1821.5907 | |||
|1245.0704 | | 1245.0704 | ||
| 63/22 | |||
| | |||
|- | |- | ||
| 69 | |||
| 1848.3788 | |||
|1263.3803 | | 1263.3803 | ||
| 189/65 | |||
| | |||
|- | |- | ||
| 70 | |||
| 1875.1669 | |||
|1281.6901 | | 1281.6901 | ||
| 65/22 | |||
| | |||
|- | |- | ||
| 71 | |||
| 1901.9550 | |||
|1300 | | 1300 | ||
| '''exact [[3/1]]''' | |||
| [[3/2|just perfect fifth]] plus an octave | |||
|} | |} | ||
Latest revision as of 19:23, 1 August 2025
← 70edt | 71edt | 72edt → |
71EDT is the equal division of the third harmonic into 71 parts of 26.7881 cents each, corresponding to 44.7960 edo (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by 45edo (45ef val), 179edo (179ef val), 224edo, 269edo (269ce val), and 403edo (403def val).
71EDT is the 13th no-twos zeta peak EDT.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.5 | +0.0 | -0.4 | +6.5 | +0.8 | +6.3 | -2.7 | -7.8 | +9.7 | +10.2 | +1.9 |
Relative (%) | +20.4 | +0.0 | -1.3 | +24.2 | +3.1 | +23.5 | -10.2 | -29.0 | +36.2 | +38.2 | +7.2 | |
Steps (reduced) |
45 (45) |
71 (0) |
104 (33) |
126 (55) |
155 (13) |
166 (24) |
183 (41) |
190 (48) |
203 (61) |
218 (5) |
222 (9) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.7 | +0.1 | -2.0 | +4.7 | +11.0 | +12.9 | +8.7 | +7.1 | -13.0 | -7.5 | -10.3 |
Relative (%) | -36.3 | +0.3 | -7.5 | +17.7 | +41.2 | +48.1 | +32.7 | +26.3 | -48.4 | -27.9 | -38.4 | |
Steps (reduced) |
233 (20) |
240 (27) |
243 (30) |
249 (36) |
257 (44) |
264 (51) |
266 (53) |
272 (59) |
275 (62) |
277 (64) |
282 (69) |
Intervals
Degree | Cents | Hekts | Corresponding JI intervals |
Comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 26.7881 | 18.3099 | 66/65 | |
2 | 53.5762 | 36.6197 | 65/63 | |
3 | 80.3643 | 54.9296 | 22/21 | |
4 | 107.1524 | 73.2394 | 117/110 | |
5 | 133.9405 | 91.5493 | 27/25 | |
6 | 160.7286 | 109.85915 | 169/154 | |
7 | 187.5167 | 128.169 | 39/35 | |
8 | 214.3048 | 146.4789 | 147/130, 198/175 | |
9 | 241.0929 | 164.7887 | 169/147 | |
10 | 267.8810 | 183.0986 | 7/6 | |
11 | 294.6691 | 201.40845 | 77/65 | |
12 | 321.4572 | 219.7183 | 65/54 | |
13 | 348.2453 | 238.0282 | 11/9 | |
14 | 375.0334 | 256.338 | 273/220 | |
15 | 401.8215 | 274.6479 | 63/50 | |
16 | 428.6096 | 292.95775 | 169/132 | |
17 | 455.3977 | 311.2676 | 13/10 | |
18 | 482.1858 | 329.5775 | 33/25 | |
19 | 508.9739 | 347.8873 | 169/126 | |
20 | 535.7620 | 366.1972 | 15/11 | |
21 | 562.5501 | 384.507 | 18/13 | |
22 | 589.3382 | 402.8169 | (45/32) | |
23 | 616.1263 | 421.1268 | 10/7 | |
24 | 642.9144 | 439.4366 | 132/91 | |
25 | 669.7025 | 457.7465 | 22/15 | |
26 | 696.4906 | 476.0563 | 486/325, 220/147 | pseudo-3/2 |
27 | 723.2787 | 494.3662 | 50/33 | |
28 | 750.0668 | 512.6761 | 54/35 | |
29 | 776.8549 | 530.9859 | 264/169 | |
30 | 803.643 | 549.2958 | 35/22 | |
31 | 830.4311 | 567.6056 | 21/13 | |
32 | 857.2192 | 585.9155 | 18/11 | |
33 | 884.0073 | 604.22535 | 5/3 | |
34 | 910.7954 | 622.5352 | 22/13 | |
35 | 937.5835 | 640.8451 | 12/7 | |
36 | 964.3715 | 659.1549 | 7/4 | |
37 | 991.1596 | 677.4648 | 39/22 | |
38 | 1017.9477 | 695.77465 | 9/5 | |
39 | 1044.7358 | 714.0845 | 11/6 | |
40 | 1071.5239 | 732.3944 | 13/7 | |
41 | 1098.312 | 750.7042 | 66/35 | |
42 | 1125.1001 | 769.0141 | 21/11 | |
43 | 1151.8882 | 787.3239 | 35/18 | |
44 | 1178.6763 | 805.6338 | 22/13 | |
45 | 1205.4644 | 823.9437 | 441/220, 325/162 | pseudo-octave |
46 | 1232.2525 | 842.2535 | 45/22 | |
47 | 1259.0406 | 860.5634 | 91/44 | |
48 | 1285.8287 | 878.8732 | 21/10 | |
49 | 1312.6168 | 897.1831 | (32/15) | |
50 | 1339.4049 | 915.493 | 13/6 | |
51 | 1366.193 | 933.8028 | 11/5 | |
52 | 1392.9811 | 952.1127 | 378/169 | |
53 | 1419.7692 | 970.4225 | 25/11 | |
54 | 1446.5573 | 988.7324 | 30/13 | |
55 | 1473.3454 | 1007.04225 | 396/169 | |
56 | 1500.1335 | 1025.3521 | 50/21 | |
57 | 1526.9216 | 1043.662 | 220/91 | |
58 | 1553.7097 | 1061.9718 | 27/11 | |
59 | 1580.4978 | 1080.2817 | 162/65 | |
60 | 1607.2859 | 1098.59155 | 195/77 | |
61 | 1634.0740 | 1161.9014 | 18/7 | |
62 | 1660.8621 | 1135.2113 | 441/169 | |
63 | 1687.6502 | 1153.5211 | 175/66, 130/49 | |
64 | 1714.4383 | 1171.831 | 35/13, 132/49 | |
65 | 1741.2264 | 1190.14085 | 462/169 | |
66 | 1768.0145 | 1208.4507 | 25/9 | |
67 | 1794.8026 | 1226.7606 | 110/39 | |
68 | 1821.5907 | 1245.0704 | 63/22 | |
69 | 1848.3788 | 1263.3803 | 189/65 | |
70 | 1875.1669 | 1281.6901 | 65/22 | |
71 | 1901.9550 | 1300 | exact 3/1 | just perfect fifth plus an octave |