62edt: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''Division of the third harmonic into 62 equal parts''' (62edt) is related to 39 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 3..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
'''[[Edt|Division of the third harmonic]] into 62 equal parts''' ( | {{Infobox ET}} | ||
'''[[Edt|Division of the third harmonic]] into 62 equal parts''' (62EDT) is related to [[39edo|39 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 3.6090 cents compressed and the step size is about 30.6767 cents. It is consistent to the [[7-odd-limit|7-integer-limit]], but not to the 8-integer-limit. In comparison, 39edo is only consistent up to the [[5-odd-limit|6-integer-limit]]. | |||
== Intervals == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | degree | ! | degree | ||
! | cents value | ! | cents value | ||
!hekts | |||
! | corresponding <br>JI intervals | ! | corresponding <br>JI intervals | ||
! | comments | ! | comments | ||
|- | |- | ||
! colspan="3" | 0 | |||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 15: | Line 17: | ||
| | 1 | | | 1 | ||
| | 30.6767 | | | 30.6767 | ||
|20.9677 | |||
| | 57/56, 56/55 | | | 57/56, 56/55 | ||
| | | | | | ||
Line 20: | Line 23: | ||
| | 2 | | | 2 | ||
| | 61.3534 | | | 61.3534 | ||
|41.9355 | |||
| | 57/55 | | | 57/55 | ||
| | | | | | ||
Line 25: | Line 29: | ||
| | 3 | | | 3 | ||
| | 92.0301 | | | 92.0301 | ||
|62.9032 | |||
| | 96/91 | | | 96/91 | ||
| | | | | | ||
Line 30: | Line 35: | ||
| | 4 | | | 4 | ||
| | 122.7068 | | | 122.7068 | ||
| | | |83.871 | ||
| | 161/150, 189/176 | |||
| | | | | | ||
|- | |- | ||
| | 5 | | | 5 | ||
| | 153.3835 | | | 153.3835 | ||
| | | |104.8387 | ||
| | 12/11 | |||
| | | | | | ||
|- | |- | ||
| | 6 | | | 6 | ||
| | 184.0602 | | | 184.0602 | ||
| | | |125.80645 | ||
| |10/9 | |||
| | | | | | ||
|- | |- | ||
| | 7 | | | 7 | ||
| | 214.7369 | | | 214.7369 | ||
| | | |146.7742 | ||
| |17/15 | |||
| | | | | | ||
|- | |- | ||
| | 8 | | | 8 | ||
| | 245.4135 | | | 245.4135 | ||
|167.7412 | |||
| | 121/105 | | | 121/105 | ||
| | | | | | ||
Line 55: | Line 65: | ||
| | 9 | | | 9 | ||
| | 276.0902 | | | 276.0902 | ||
| | | |188.7097 | ||
| | 20/17 | |||
| | | | | | ||
|- | |- | ||
| | 10 | | | 10 | ||
| | 306.7669 | | | 306.7669 | ||
| | | |209.6774 | ||
| | 6/5 | |||
| | | | | | ||
|- | |- | ||
| | 11 | | | 11 | ||
| | 337.4436 | | | 337.4436 | ||
|230.6452 | |||
| | 243/200 | | | 243/200 | ||
| | | | | | ||
Line 70: | Line 83: | ||
| | 12 | | | 12 | ||
| | 368.1203 | | | 368.1203 | ||
| | | |251.6129 | ||
| | 16/13 | |||
| | | | | | ||
|- | |- | ||
| | 13 | | | 13 | ||
| | 398. | | | 398.797 | ||
|272.58065 | |||
| | 34/27 | | | 34/27 | ||
| | | | | | ||
Line 80: | Line 95: | ||
| | 14 | | | 14 | ||
| | 429.4737 | | | 429.4737 | ||
| | | |293.5484 | ||
| | 9/7 | |||
| | | | | | ||
|- | |- | ||
| | 15 | | | 15 | ||
| | 460.1504 | | | 460.1504 | ||
| | | |314.5161 | ||
| |21/16 | |||
| | | | | | ||
|- | |- | ||
| | 16 | | | 16 | ||
| | 490.8271 | | | 490.8271 | ||
| | | |335.4839 | ||
| | [[4/3]] | |||
| | | | | | ||
|- | |- | ||
| | 17 | | | 17 | ||
| | 521.5038 | | | 521.5038 | ||
|356.4516 | |||
| | 77/57 | | | 77/57 | ||
| | | | | | ||
Line 100: | Line 119: | ||
| | 18 | | | 18 | ||
| | 552.1805 | | | 552.1805 | ||
|377.49135 | |||
| | [[11/8]] | | | [[11/8]] | ||
| | | | | | ||
Line 105: | Line 125: | ||
| | 19 | | | 19 | ||
| | 582.8572 | | | 582.8572 | ||
|398.3871 | |||
| | [[7/5]] | | | [[7/5]] | ||
| | | | | | ||
Line 110: | Line 131: | ||
| | 20 | | | 20 | ||
| | 613.5339 | | | 613.5339 | ||
|419.3548 | |||
| | 57/40 | | | 57/40 | ||
| | | | | | ||
Line 115: | Line 137: | ||
| | 21 | | | 21 | ||
| | 644.2106 | | | 644.2106 | ||
| | | |440.3226 | ||
| |16/11 | |||
| | | | | | ||
|- | |- | ||
| | 22 | | | 22 | ||
| | 674.8873 | | | 674.8873 | ||
|461.2903 | |||
| | 96/65 | | | 96/65 | ||
| | | | | | ||
|- | |- | ||
| | 23 | | | 23 | ||
| | 705. | | | 705.564 | ||
| | | |482.2851 | ||
| | | | |[[3/2]] | ||
| | | |||
|- | |- | ||
| | 24 | | | 24 | ||
| | 736.2406 | | | 736.2406 | ||
| | | |503.2258 | ||
| | 153/100 | |||
| | | | | | ||
|- | |- | ||
| | 25 | | | 25 | ||
| | 766.9173 | | | 766.9173 | ||
| | | |524.19355 | ||
| | 81/52 | |||
| | | | | | ||
|- | |- | ||
| | 26 | | | 26 | ||
| | 797. | | | 797.594 | ||
| | | |545.1613 | ||
| |27/17 | |||
| | | | | | ||
|- | |- | ||
| | 27 | | | 27 | ||
| | 828.2707 | | | 828.2707 | ||
| | | |566.129 | ||
| |13/8 | |||
| | | | | | ||
|- | |- | ||
| | 28 | | | 28 | ||
| | 858.9474 | | | 858.9474 | ||
| | | |587.0968 | ||
| | 69/42 | |||
| | | | | | ||
|- | |- | ||
| | 29 | | | 29 | ||
| | 889.6241 | | | 889.6241 | ||
| | | |608.0645 | ||
| | | | | 117/70 | ||
| | pseudo-[[5/3]] | |||
|- | |- | ||
| | 30 | | | 30 | ||
| | 920.3008 | | | 920.3008 | ||
| | | |629.0323 | ||
| | 17/10 | |||
| | | | | | ||
|- | |- | ||
| | 31 | | | 31 | ||
| | 950.9775 | | | 950.9775 | ||
| | | |650 | ||
| | 26/15 | |||
| | | | | | ||
|- | |- | ||
| | 32 | | | 32 | ||
| | 981.6542 | | | 981.6542 | ||
| | | |670.9677 | ||
| | 30/17 | |||
| | | | | | ||
|- | |- | ||
| | 33 | | | 33 | ||
| | 1012.3309 | | | 1012.3309 | ||
| | | |691.9355 | ||
| | | | | 70/39 | ||
| | pseudo-[[9/5]] | |||
|- | |- | ||
| | 34 | | | 34 | ||
| | 1043.0076 | | | 1043.0076 | ||
| | | |712.9032 | ||
| | 42/23 | |||
| | | | | | ||
|- | |- | ||
| | 35 | | | 35 | ||
| | 1073.6843 | | | 1073.6843 | ||
| | | |733.871 | ||
| | 119/64 | |||
| | | | | | ||
|- | |- | ||
| | 36 | | | 36 | ||
| | 1104. | | | 1104.361 | ||
| | | |754.8387 | ||
| |17/9 | |||
| | | | | | ||
|- | |- | ||
| | 37 | | | 37 | ||
| | 1135.0377 | | | 1135.0377 | ||
| | | |775.80645 | ||
| | 52/27 | |||
| | | | | | ||
|- | |- | ||
| | 38 | | | 38 | ||
| | 1165.7144 | | | 1165.7144 | ||
| | | |796.7742 | ||
| | 100/51 | |||
| | | | | | ||
|- | |- | ||
| | 39 | | | 39 | ||
| | 1196. | | | 1196.391 | ||
| | | |817.7419 | ||
| | | | | 2/1 | ||
| | pseudo-[[octave]] | |||
|- | |- | ||
| | 40 | | | 40 | ||
| | 1227.0677 | | | 1227.0677 | ||
|838.7097 | |||
| | 65/32 | | | 65/32 | ||
| | | | | | ||
Line 215: | Line 257: | ||
| | 41 | | | 41 | ||
| | 1257.7444 | | | 1257.7444 | ||
| | | |859.6774 | ||
| |114/55 | |||
| | | | | | ||
|- | |- | ||
| | 42 | | | 42 | ||
| | 1288.4211 | | | 1288.4211 | ||
|880.6452 | |||
| | [[20/19|40/19]] | | | [[20/19|40/19]] | ||
| | | | | | ||
Line 225: | Line 269: | ||
| | 43 | | | 43 | ||
| | 1319.0978 | | | 1319.0978 | ||
|901.6129 | |||
| | [[15/7]] | | | [[15/7]] | ||
| | | | | | ||
Line 230: | Line 275: | ||
| | 44 | | | 44 | ||
| | 1349.7745 | | | 1349.7745 | ||
| | [[24/11]] | |922.58065 | ||
| | [[12/11|24/11]] | |||
| | | | | | ||
|- | |- | ||
| | 45 | | | 45 | ||
| | 1380.4512 | | | 1380.4512 | ||
| | | |943.5484 | ||
| | 20/9 | |||
| | | | | | ||
|- | |- | ||
| | 46 | | | 46 | ||
| | 1411.1279 | | | 1411.1279 | ||
| | | |964.5161 | ||
| | 9/4 | |||
| | | | | | ||
|- | |- | ||
| | 47 | | | 47 | ||
| | 1441.8046 | | | 1441.8046 | ||
|985.4839 | |||
| | 23/10 | | | 23/10 | ||
| | | | | | ||
Line 250: | Line 299: | ||
| | 48 | | | 48 | ||
| | 1472.4813 | | | 1472.4813 | ||
| | | |1006.4516 | ||
| | 7/3 | |||
| | | | | | ||
|- | |- | ||
| | 49 | | | 49 | ||
| | 1503. | | | 1503.158 | ||
|1027.4194 | |||
| | 81/34 | | | 81/34 | ||
| | | | | | ||
Line 260: | Line 311: | ||
| | 50 | | | 50 | ||
| | 1533.8347 | | | 1533.8347 | ||
| | | |1048.3871 | ||
| | 39/16 | |||
| | | | | | ||
|- | |- | ||
| | 51 | | | 51 | ||
| | 1564.5114 | | | 1564.5114 | ||
|1069.3548 | |||
| | 200/81 | | | 200/81 | ||
| | | | | | ||
Line 270: | Line 323: | ||
| | 52 | | | 52 | ||
| | 1595.1881 | | | 1595.1881 | ||
|1090.3226 | |||
| | 98/39 | | | 98/39 | ||
| | | | | | ||
Line 275: | Line 329: | ||
| | 53 | | | 53 | ||
| | 1625.8648 | | | 1625.8648 | ||
| | | |1111.2903 | ||
| | 51/20 | |||
| | | | | | ||
|- | |- | ||
| | 54 | | | 54 | ||
| | 1656.5415 | | | 1656.5415 | ||
| | | |1132.2581 | ||
| | 192/65 | |||
| | | | | | ||
|- | |- | ||
| | 55 | | | 55 | ||
| | 1687.2181 | | | 1687.2181 | ||
| | | |1153.2258 | ||
| | 8/3 | |||
| | | | | | ||
|- | |- | ||
| | 56 | | | 56 | ||
| | 1717.8948 | | | 1717.8948 | ||
| | | |1174.19355 | ||
| |27/10 | |||
| | | | | | ||
|- | |- | ||
| | 57 | | | 57 | ||
| | 1748.5715 | | | 1748.5715 | ||
| | | |1195.1613 | ||
| |11/4 | |||
| | | | | | ||
|- | |- | ||
| | 58 | | | 58 | ||
| | 1779.2482 | | | 1779.2482 | ||
| | | |1216.129 | ||
| | 176/63 | |||
| | | | | | ||
|- | |- | ||
| | 59 | | | 59 | ||
| | 1809.9249 | | | 1809.9249 | ||
|1237.0968 | |||
| | 91/32 | | | 91/32 | ||
| | | | | | ||
Line 310: | Line 371: | ||
| | 60 | | | 60 | ||
| | 1840.6016 | | | 1840.6016 | ||
|1258.0645 | |||
| | 55/19 | | | 55/19 | ||
| | | | | | ||
Line 315: | Line 377: | ||
| | 61 | | | 61 | ||
| | 1871.2783 | | | 1871.2783 | ||
|1279.0323 | |||
| | 56/19 | | | 56/19 | ||
| | | | | | ||
|- | |- | ||
| | 62 | | | 62 | ||
| | 1901. | | | 1901.955 | ||
|1300 | |||
| | '''exact [[3/1]]''' | | | '''exact [[3/1]]''' | ||
| | [[3/2|just perfect fifth]] plus an octave | | | [[3/2|just perfect fifth]] plus an octave | ||
|} | |} | ||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 62 | |||
| num = 3 | |||
| denom = 1 | |||
| intervals = integer | |||
}} | |||
{{Harmonics in equal | |||
| steps = 62 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = integer | |||
}} |
Latest revision as of 19:23, 1 August 2025
← 61edt | 62edt | 63edt → |
Division of the third harmonic into 62 equal parts (62EDT) is related to 39 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 3.6090 cents compressed and the step size is about 30.6767 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 39edo is only consistent up to the 6-integer-limit.
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 30.6767 | 20.9677 | 57/56, 56/55 | |
2 | 61.3534 | 41.9355 | 57/55 | |
3 | 92.0301 | 62.9032 | 96/91 | |
4 | 122.7068 | 83.871 | 161/150, 189/176 | |
5 | 153.3835 | 104.8387 | 12/11 | |
6 | 184.0602 | 125.80645 | 10/9 | |
7 | 214.7369 | 146.7742 | 17/15 | |
8 | 245.4135 | 167.7412 | 121/105 | |
9 | 276.0902 | 188.7097 | 20/17 | |
10 | 306.7669 | 209.6774 | 6/5 | |
11 | 337.4436 | 230.6452 | 243/200 | |
12 | 368.1203 | 251.6129 | 16/13 | |
13 | 398.797 | 272.58065 | 34/27 | |
14 | 429.4737 | 293.5484 | 9/7 | |
15 | 460.1504 | 314.5161 | 21/16 | |
16 | 490.8271 | 335.4839 | 4/3 | |
17 | 521.5038 | 356.4516 | 77/57 | |
18 | 552.1805 | 377.49135 | 11/8 | |
19 | 582.8572 | 398.3871 | 7/5 | |
20 | 613.5339 | 419.3548 | 57/40 | |
21 | 644.2106 | 440.3226 | 16/11 | |
22 | 674.8873 | 461.2903 | 96/65 | |
23 | 705.564 | 482.2851 | 3/2 | |
24 | 736.2406 | 503.2258 | 153/100 | |
25 | 766.9173 | 524.19355 | 81/52 | |
26 | 797.594 | 545.1613 | 27/17 | |
27 | 828.2707 | 566.129 | 13/8 | |
28 | 858.9474 | 587.0968 | 69/42 | |
29 | 889.6241 | 608.0645 | 117/70 | pseudo-5/3 |
30 | 920.3008 | 629.0323 | 17/10 | |
31 | 950.9775 | 650 | 26/15 | |
32 | 981.6542 | 670.9677 | 30/17 | |
33 | 1012.3309 | 691.9355 | 70/39 | pseudo-9/5 |
34 | 1043.0076 | 712.9032 | 42/23 | |
35 | 1073.6843 | 733.871 | 119/64 | |
36 | 1104.361 | 754.8387 | 17/9 | |
37 | 1135.0377 | 775.80645 | 52/27 | |
38 | 1165.7144 | 796.7742 | 100/51 | |
39 | 1196.391 | 817.7419 | 2/1 | pseudo-octave |
40 | 1227.0677 | 838.7097 | 65/32 | |
41 | 1257.7444 | 859.6774 | 114/55 | |
42 | 1288.4211 | 880.6452 | 40/19 | |
43 | 1319.0978 | 901.6129 | 15/7 | |
44 | 1349.7745 | 922.58065 | 24/11 | |
45 | 1380.4512 | 943.5484 | 20/9 | |
46 | 1411.1279 | 964.5161 | 9/4 | |
47 | 1441.8046 | 985.4839 | 23/10 | |
48 | 1472.4813 | 1006.4516 | 7/3 | |
49 | 1503.158 | 1027.4194 | 81/34 | |
50 | 1533.8347 | 1048.3871 | 39/16 | |
51 | 1564.5114 | 1069.3548 | 200/81 | |
52 | 1595.1881 | 1090.3226 | 98/39 | |
53 | 1625.8648 | 1111.2903 | 51/20 | |
54 | 1656.5415 | 1132.2581 | 192/65 | |
55 | 1687.2181 | 1153.2258 | 8/3 | |
56 | 1717.8948 | 1174.19355 | 27/10 | |
57 | 1748.5715 | 1195.1613 | 11/4 | |
58 | 1779.2482 | 1216.129 | 176/63 | |
59 | 1809.9249 | 1237.0968 | 91/32 | |
60 | 1840.6016 | 1258.0645 | 55/19 | |
61 | 1871.2783 | 1279.0323 | 56/19 | |
62 | 1901.955 | 1300 | exact 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.6 | +0.0 | -7.2 | +5.3 | -3.6 | +5.6 | -10.8 | +0.0 | +1.7 | -10.0 | -7.2 |
Relative (%) | -11.8 | +0.0 | -23.5 | +17.2 | -11.8 | +18.3 | -35.3 | +0.0 | +5.4 | -32.5 | -23.5 | |
Steps (reduced) |
39 (39) |
62 (0) |
78 (16) |
91 (29) |
101 (39) |
110 (48) |
117 (55) |
124 (0) |
130 (6) |
135 (11) |
140 (16) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.6 | +2.0 | +5.3 | -14.4 | +3.3 | -3.6 | -5.2 | -2.0 | +5.6 | -13.6 | +1.5 |
Relative (%) | +24.8 | +6.5 | +17.2 | -47.1 | +10.8 | -11.8 | -16.9 | -6.4 | +18.3 | -44.2 | +4.9 | |
Steps (reduced) |
145 (21) |
149 (25) |
153 (29) |
156 (32) |
160 (36) |
163 (39) |
166 (42) |
169 (45) |
172 (48) |
174 (50) |
177 (53) |