53edt: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m Removing from Category:Edonoi using Cat-a-lot |
||
(7 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
'''53EDT''' is the [[Edt|equal division of the third harmonic]] into 53 parts of 35.8859 [[cent|cents]] each, corresponding to 33.4393 [[edo]]. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; 891/875, 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup). | {{Infobox ET}} | ||
'''53EDT''' is the [[Edt|equal division of the third harmonic]] into 53 parts of 35.8859 [[cent|cents]] each, corresponding to 33.4393 [[edo]]. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; [[891/875|891/875,]] 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup). | |||
== | == Harmonics == | ||
{{Harmonics in equal | |||
| steps = 53 | |||
| num = 3 | |||
| denom = 1 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 53 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} | |||
== Intervals == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Degree | ||
! | ! Cents value | ||
! | ! Hekts | ||
! | ! Corresponding <br>JI intervals | ||
! | ! Comments | ||
|- | |- | ||
| | | colspan="3" | 0 | ||
| '''exact [[1/1]]''' | |||
| | |||
|- | |- | ||
| 1 | |||
| 35.8859 | |||
|24.5283 | | 24.5283 | ||
| [[50/49]], [[49/48]] | |||
| | |||
|- | |- | ||
| 2 | |||
| 71.7719 | |||
|49.0566 | | 49.0566 | ||
| [[25/24]] | |||
| | |||
|- | |- | ||
| 3 | |||
| 107.6578 | |||
|73.5849 | | 73.5849 | ||
| [[17/16]], [[16/15]] | |||
| | |||
|- | |- | ||
| 4 | |||
| 143.5438 | |||
|98.1132 | | 98.1132 | ||
| 38/35 | |||
| | |||
|- | |- | ||
| 5 | |||
| 179.4297 | |||
|122.6415 | | 122.6415 | ||
| 51/46, 132/119 | |||
| | |||
|- | |- | ||
| 6 | |||
| 215.3157 | |||
|147.1698 | | 147.1698 | ||
| 17/15 | |||
| | |||
|- | |- | ||
| 7 | |||
| 251.2016 | |||
|171.6981 | | 171.6981 | ||
| 15/13 | |||
| | |||
|- | |- | ||
| 8 | |||
| 287.0875 | |||
|196.2264 | | 196.2264 | ||
| 33/28, 13/11 | |||
| | |||
|- | |- | ||
| 9 | |||
| 322.9735 | |||
|220.7547 | | 220.7547 | ||
| 6/5 | |||
| | |||
|- | |- | ||
| 10 | |||
| 358.8594 | |||
|245.283 | | 245.283 | ||
| [[16/13]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 394.7454 | |||
|269.8113 | | 269.8113 | ||
| [[5/4]], 49/39 | |||
| | |||
|- | |- | ||
| 12 | |||
| 430.6313 | |||
|594.3396 | | 594.3396 | ||
| [[9/7]], 50/39 | |||
| | |||
|- | |- | ||
| 13 | |||
| 466.5173 | |||
|318.8679 | | 318.8679 | ||
| 21/16 | |||
| | |||
|- | |- | ||
| 14 | |||
| 502.4032 | |||
|343.3962 | | 343.3962 | ||
| [[4/3]], 171/128 | |||
| | |||
|- | |- | ||
| 15 | |||
| 538.2892 | |||
|367.9245 | | 367.9245 | ||
| [[15/11]] | |||
| | |||
|- | |- | ||
| 16 | |||
| 574.1751 | |||
|392.4528 | | 392.4528 | ||
| 39/28 | |||
| | |||
|- | |- | ||
| 17 | |||
| 610.061 | |||
|416.9811 | | 416.9811 | ||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 18 | |||
| 645.947 | |||
|441.5094 | | 441.5094 | ||
| 35/24 | |||
| | |||
|- | |- | ||
| 19 | |||
| 681.8329 | |||
|466.0377 | | 466.0377 | ||
| 126/85, 40/27 | |||
| | |||
|- | |- | ||
| 20 | |||
| 717.7189 | |||
|490.566 | | 490.566 | ||
| | |||
| pseudo-3/2 | |||
|- | |- | ||
| 21 | |||
| 753.6048 | |||
|515.0943 | | 515.0943 | ||
| [[17/11]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 789.4908 | |||
|539.6226 | | 539.6226 | ||
| [[30/19]] | |||
| | |||
|- | |- | ||
| 23 | |||
| 825.3767 | |||
|564.1509 | | 564.1509 | ||
| [[13/8]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 861.2626 | |||
|588.67945 | | 588.67945 | ||
| | |||
| | |||
|- | |- | ||
| 25 | |||
| 897.1486 | |||
|613.20755 | | 613.20755 | ||
| 42/25, 32/19 | |||
| | |||
|- | |- | ||
| 26 | |||
| 933.0345 | |||
|637.73585 | | 637.73585 | ||
| [[12/7]] | |||
| | |||
|- | |- | ||
| 27 | |||
| 968.9205 | |||
|662.26415 | | 662.26415 | ||
| [[7/4]] | |||
| | |||
|- | |- | ||
| 28 | |||
| 1004.8064 | |||
|686.79245 | | 686.79245 | ||
| 25/14, 57/32 | |||
| | |||
|- | |- | ||
| 29 | |||
| 1040.6924 | |||
|711.32075 | | 711.32075 | ||
| | |||
| | |||
|- | |- | ||
| 30 | |||
| 1076.5783 | |||
|735.8491 | | 735.8491 | ||
| 24/13 | |||
| | |||
|- | |- | ||
| 31 | |||
| 1112.4642 | |||
|760.3774 | | 760.3774 | ||
| [[19/10]] | |||
| | |||
|- | |- | ||
| 32 | |||
| 1148.3502 | |||
|784.9057 | | 784.9057 | ||
| 33/17 | |||
| | |||
|- | |- | ||
| 33 | |||
| 1184.2361 | |||
|809.434 | | 809.434 | ||
| | |||
| pseudooctave | |||
|- | |- | ||
| 34 | |||
| 1220.1221 | |||
|833.9623 | | 833.9623 | ||
| 85/42, 81/40 | |||
| | |||
|- | |- | ||
| 35 | |||
| 1256.008 | |||
|858.4906 | | 858.4906 | ||
| 95/46 | |||
| | |||
|- | |- | ||
| 36 | |||
| 1291.894 | |||
|883.0189 | | 883.0189 | ||
| 21/10 | |||
| | |||
|- | |- | ||
| 37 | |||
| 1327.7799 | |||
|907.5472 | | 907.5472 | ||
| [[14/13|28/13]] | |||
| | |||
|- | |- | ||
| 38 | |||
| 1363.6658 | |||
|932.0755 | | 932.0755 | ||
| [[11/5]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 1399.5518 | |||
|956.6038 | | 956.6038 | ||
| 9/4, [[64/57|128/57]] | |||
| | |||
|- | |- | ||
| 40 | |||
| 1435.4377 | |||
|981.1321 | | 981.1321 | ||
| 16/7 | |||
| | |||
|- | |- | ||
| 41 | |||
| 1471.3237 | |||
|1005.3304 | | 1005.3304 | ||
| 7/3, 117/50 | |||
| | |||
|- | |- | ||
| 42 | |||
| 1507.2096 | |||
|1303.1887 | | 1303.1887 | ||
| 12/5, 117/49 | |||
| | |||
|- | |- | ||
| 43 | |||
| 1543.0956 | |||
|1054.717 | | 1054.717 | ||
| [[39/32|39/16]] | |||
| | |||
|- | |- | ||
| 44 | |||
| 1578.9815 | |||
|1079.2453 | | 1079.2453 | ||
| 5/2 | |||
| | |||
|- | |- | ||
| 45 | |||
| 1614.8675 | |||
|1130.7736 | | 1130.7736 | ||
| 28/11, 33/13 | |||
| | |||
|- | |- | ||
| 46 | |||
| 1650.7534 | |||
|1128.3019 | | 1128.3019 | ||
| 13/5 | |||
| | |||
|- | |- | ||
| 47 | |||
| 1686.6393 | |||
|1152.8302 | | 1152.8302 | ||
| 45/17 | |||
| | |||
|- | |- | ||
| 48 | |||
| 1722.5253 | |||
|1177.3585 | | 1177.3585 | ||
| 119/44 | |||
| | |||
|- | |- | ||
| 49 | |||
| 1758.4112 | |||
|1201.8868 | | 1201.8868 | ||
| 105/38 | |||
| | |||
|- | |- | ||
| 50 | |||
| 1794.2972 | |||
|1226.4151 | | 1226.4151 | ||
| 48/17, 45/16 | |||
| | |||
|- | |- | ||
| 51 | |||
| 1830.1831 | |||
|1250.9434 | | 1250.9434 | ||
| [[36/25|72/25]] | |||
| | |||
|- | |- | ||
| 52 | |||
| 1866.0691 | |||
|1275.4717 | | 1275.4717 | ||
| 147/50, 144/49 | |||
| | |||
|- | |- | ||
| 53 | |||
| 1901.955 | |||
|1300 | | 1300 | ||
| '''exact [[3/1]]''' | |||
| | |||
|} | |} | ||
Latest revision as of 19:23, 1 August 2025
← 52edt | 53edt | 54edt → |
53EDT is the equal division of the third harmonic into 53 parts of 35.8859 cents each, corresponding to 33.4393 edo. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; 891/875, 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup).
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.8 | +0.0 | +4.4 | +12.8 | -15.8 | +4.5 | -11.4 | +0.0 | -3.0 | +11.5 | +4.4 |
Relative (%) | -43.9 | +0.0 | +12.1 | +35.6 | -43.9 | +12.4 | -31.8 | +0.0 | -8.3 | +31.9 | +12.1 | |
Steps (reduced) |
33 (33) |
53 (0) |
67 (14) |
78 (25) |
86 (33) |
94 (41) |
100 (47) |
106 (0) |
111 (5) |
116 (10) |
120 (14) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.3 | -11.3 | +12.8 | +8.7 | +11.4 | -15.8 | -1.7 | +17.1 | +4.5 | -4.3 | -9.5 |
Relative (%) | +26.0 | -31.5 | +35.6 | +24.3 | +31.8 | -43.9 | -4.8 | +47.8 | +12.4 | -12.0 | -26.5 | |
Steps (reduced) |
124 (18) |
127 (21) |
131 (25) |
134 (28) |
137 (31) |
139 (33) |
142 (36) |
145 (39) |
147 (41) |
149 (43) |
151 (45) |
Intervals
Degree | Cents value | Hekts | Corresponding JI intervals |
Comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 35.8859 | 24.5283 | 50/49, 49/48 | |
2 | 71.7719 | 49.0566 | 25/24 | |
3 | 107.6578 | 73.5849 | 17/16, 16/15 | |
4 | 143.5438 | 98.1132 | 38/35 | |
5 | 179.4297 | 122.6415 | 51/46, 132/119 | |
6 | 215.3157 | 147.1698 | 17/15 | |
7 | 251.2016 | 171.6981 | 15/13 | |
8 | 287.0875 | 196.2264 | 33/28, 13/11 | |
9 | 322.9735 | 220.7547 | 6/5 | |
10 | 358.8594 | 245.283 | 16/13 | |
11 | 394.7454 | 269.8113 | 5/4, 49/39 | |
12 | 430.6313 | 594.3396 | 9/7, 50/39 | |
13 | 466.5173 | 318.8679 | 21/16 | |
14 | 502.4032 | 343.3962 | 4/3, 171/128 | |
15 | 538.2892 | 367.9245 | 15/11 | |
16 | 574.1751 | 392.4528 | 39/28 | |
17 | 610.061 | 416.9811 | 10/7 | |
18 | 645.947 | 441.5094 | 35/24 | |
19 | 681.8329 | 466.0377 | 126/85, 40/27 | |
20 | 717.7189 | 490.566 | pseudo-3/2 | |
21 | 753.6048 | 515.0943 | 17/11 | |
22 | 789.4908 | 539.6226 | 30/19 | |
23 | 825.3767 | 564.1509 | 13/8 | |
24 | 861.2626 | 588.67945 | ||
25 | 897.1486 | 613.20755 | 42/25, 32/19 | |
26 | 933.0345 | 637.73585 | 12/7 | |
27 | 968.9205 | 662.26415 | 7/4 | |
28 | 1004.8064 | 686.79245 | 25/14, 57/32 | |
29 | 1040.6924 | 711.32075 | ||
30 | 1076.5783 | 735.8491 | 24/13 | |
31 | 1112.4642 | 760.3774 | 19/10 | |
32 | 1148.3502 | 784.9057 | 33/17 | |
33 | 1184.2361 | 809.434 | pseudooctave | |
34 | 1220.1221 | 833.9623 | 85/42, 81/40 | |
35 | 1256.008 | 858.4906 | 95/46 | |
36 | 1291.894 | 883.0189 | 21/10 | |
37 | 1327.7799 | 907.5472 | 28/13 | |
38 | 1363.6658 | 932.0755 | 11/5 | |
39 | 1399.5518 | 956.6038 | 9/4, 128/57 | |
40 | 1435.4377 | 981.1321 | 16/7 | |
41 | 1471.3237 | 1005.3304 | 7/3, 117/50 | |
42 | 1507.2096 | 1303.1887 | 12/5, 117/49 | |
43 | 1543.0956 | 1054.717 | 39/16 | |
44 | 1578.9815 | 1079.2453 | 5/2 | |
45 | 1614.8675 | 1130.7736 | 28/11, 33/13 | |
46 | 1650.7534 | 1128.3019 | 13/5 | |
47 | 1686.6393 | 1152.8302 | 45/17 | |
48 | 1722.5253 | 1177.3585 | 119/44 | |
49 | 1758.4112 | 1201.8868 | 105/38 | |
50 | 1794.2972 | 1226.4151 | 48/17, 45/16 | |
51 | 1830.1831 | 1250.9434 | 72/25 | |
52 | 1866.0691 | 1275.4717 | 147/50, 144/49 | |
53 | 1901.955 | 1300 | exact 3/1 |