26edf: Difference between revisions
Jump to navigation
Jump to search
m Removing from Category:Edf using Cat-a-lot |
m Removing from Category:Edonoi using Cat-a-lot |
||
Line 309: | Line 309: | ||
{{stub}} | {{stub}} | ||
Latest revision as of 19:21, 1 August 2025
← 25edf | 26edf | 27edf → |
26EDF is the equal division of the just perfect fifth into 26 parts of 26.9983 cents each, corresponding to 44.4473 edo. It is nearly identical to every ninth step of 400edo.
Commas tempered by this tuning
7-limit: 50/49, 36/35, 126/125
11-limit: 56/55, 80/77, 99/98, 100/99, 128/121
17-limit: 52/51
Tempering out these commas results in the following equivalencies:
7/5~10/7
7/6~6/5
10/7~36/25
11/8~7/5
49/40~14/11
14/11~9/7
9/8~25/22
33/32~12/11
17/13~4/3
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.1 | -12.1 | +2.8 | -5.5 | +2.8 | +6.0 | -9.2 | +2.8 |
Relative (%) | -44.7 | -44.7 | +10.5 | -20.3 | +10.5 | +22.1 | -34.2 | +10.5 | |
Steps (reduced) |
44 (18) |
70 (18) |
89 (11) |
103 (25) |
115 (11) |
125 (21) |
133 (3) |
141 (11) |
Harmonic | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.4 | +6.4 | -9.2 | -12.8 | -6.1 | +9.4 | +5.7 | +8.7 |
Relative (%) | +34.9 | +23.8 | -34.2 | -47.5 | -22.7 | +34.9 | +21.1 | +32.3 | |
Steps (reduced) |
148 (18) |
154 (24) |
159 (3) |
164 (8) |
169 (13) |
174 (18) |
178 (22) |
182 (0) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 26.9983 | 66/65, 65/64, 64/63 | |
2 | 53.9965 | 33/32, 98/95 | |
3 | 80.9948 | 22/21 | |
4 | 107.9931 | 16/15 | |
5 | 134.9913 | ||
6 | 161.9896 | ||
7 | 188.9879 | 135/121 | |
8 | 215.9862 | 17/15 | |
9 | 242.9844 | ||
10 | 269.9827 | 7/6 | |
11 | 296.981 | 32/27, 19/16 | |
12 | 323.9792 | pseudo-6/5 | |
13 | 350.9775 | 60/49, 49/40 | |
14 | 377.9758 | pseudo-5/4 | |
15 | 404.974 | 24/19 | |
16 | 431.9723 | ||
17 | 458.9706 | ||
18 | 485.9688 | 45/34 | pseudo-4/3 |
19 | 512.9671 | 121/90 | |
20 | 539.9654 | ||
21 | 566.9637 | ||
22 | 593.9619 | ||
23 | 620.9602 | 63/44 | |
24 | 647.9585 | 16/11 | |
25 | 674.9567 | ||
26 | 701.955 | exact 3/2 | just perfect fifth |
27 | 728.9533 | 99/65, 195/128, 21/16 | |
28 | 755.9515 | 99/64, 147/95 | |
29 | 782.9498 | 11/7 | |
30 | 809.9481 | 8/5 | |
31 | 836.9463 | ||
32 | 863.9446 | ||
33 | 890.9429 | 405/242 | pseudo-5/3 |
34 | 917.9412 | 17/10 | |
35 | 944.9394 | ||
36 | 971.9377 | 7/4 | |
37 | 998.936 | 16/9, 57/32 | |
38 | 1025.9342 | pseudo-9/5 | |
39 | 1052.9325 | 90/49, 147/80 | |
40 | 1079.9308 | pseudo-15/8 | |
41 | 1106.929 | ||
42 | 1133.9273 | ||
43 | 1160.9256 | ||
44 | 1187.9238 | 135/98 | pseudo-2/1 |
45 | 1214.9221 | 121/60 | |
46 | 1241.9204 | ||
47 | 1268.9187 | ||
48 | 1295.9169 | ||
49 | 1322.9152 | 189/88 | |
50 | 1349.9135 | 24/11 | |
51 | 1376.9117 | ||
52 | 1403.91 | exact 9/4 |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |