33ed4: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>jauernig
**Imported revision 536807394 - Original comment: **
Fredg999 category edits (talk | contribs)
m Removing from Category:Ed4 using Cat-a-lot
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
'''33ed4''' is the [[ed4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of '''<span style="color: #080;">Equivocal Tuning</span>'''.
: This revision was by author [[User:jauernig|jauernig]] and made on <tt>2015-01-09 19:03:35 UTC</tt>.<br>
: The original revision id was <tt>536807394</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**33ed4** is the [[ED4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[xenharmonic/cent|cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of equivocal tuning.


It has a [[9_5|9/5]] which is 0.6 cents sharp, a [[7_5|7/5]] which is 0.7 cents flat, and a [[9_7|9/7]] which is 1.3 cents sharp. Therefore it is closely related to [[13edt]], the [[Bohlen-Pierce]] scale, although it has no pure [[3_1|3/1]], which is 11.1 cents flat.
It has a [[9/5]] which is 0.6{{c}} sharp, a [[7/5]] which is 0.7{{c}} flat, and a [[9/7]] which is 1.3{{c}} sharp. Therefore it is closely related to [[13edt]], the [[Bohlen–Pierce scale]], although it has no pure [[3/1]], which is 11.1 cents flat. The lack of a [[3/2|pure fifth]] makes it also interesting.


Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1 cent).
Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1{{c}}).


===Intervals===  
== Intervals ==
||~ degree ||~ in cents ||~ nearest JI
{| class="wikitable right-all mw-collapsible"
interval ||~ in cents ||~ difference
|+ style="font-size: 105%;" | Intervals of 33ed4
in cents ||
|-
|| 1 || 72,7 || 24/23 || 73,7 || -1,0 ||
! Degree
|| 2 || 145,5 || 25/23 || 144,4 || 1,1 ||
! Cents
|| 3 || 218,2 || 17/15 || 216,6 || 1,6 ||
! Nearest JI<br />interval
|| 4 || 290,9 || 13/11 || 289,2 || 1,7 ||
! Cents
|| 5 || 363,6 || 16/13 || 359,5 || 4,1 ||
! Difference<br />in cents
|| 6 || 436,4 || 9/7 || 435,1 || 1,3 ||
|-
|| 7 || 509,1 || 51/38 || 509,4 || -0,3 ||
| 1
|| 8 || 581,8 || 7/5 || 582,5 || -0,7 ||
| 72.7
|| 9 || 654,5 || 19/13 || 657,0 || -2,5 ||
| 24/23
|| 10 || 727,3 || 35/23 || 726,9 || 0,4 ||
| 73.7
|| 11 || 800,0 || 27/17 || 800,9 || -0,9 ||
| −1.0
|| 12 || 872,7 || 53/32 || 873,5 || -0,8 ||
|-
|| 13 || 945,5 || 19/11 || 946,2 || -0,7 ||
| 2
|| 14 || 1018,2 || 9/5 || 1017,6 || 0,6 ||
| 145.5
|| 15 || 1090,9 || 15/8 || 1088,3 || 2,6 ||
| 25/23
|| 16 || 1163,6 || 45/23 || 1161,9 || 1,7 ||
| 144.4
|| 17 || 1236,4 || 49/24 || 1235,7 || 0,7 ||
| 1.1
|| 18 || 1309,1 || 32/15 || 1311,7 || -2,6 ||
|-
|| 19 || 1381,8 || 20/9 || 1382,4 || -0,6 ||
| 3
|| 20 || 1454,5 || 44/19 || 1453,8 || 0,7 ||
| 218.2
|| 21 || 1527,3 || 29/12 || 1527,6 || -0,3 ||
| 17/15
|| 22 || 1600,0 || 68/27 || 1599,1 || 0,9 ||
| 216.6
|| 23 || 1672,7 || 21/8 || 1670,8 || 1,9 ||
| 1.6
|| 24 || 1745,5 || 52/19 || 1743,0 || 2,5 ||
|-
|| 25 || 1818,2 || 20/7 || 1817,5 || 0,7 ||
| 4
|| 26 || 1890,9 || 116/39 || 1887,1 || 3,8 ||
| 290.9
|| 27 || 1963,6 || 28/9 || 1964,9 || -1,3 ||
| 13/11
|| 28 || 2036,4 || 13/4 || 2040,5 || -4,1 ||
| 289.2
|| 29 || 2109,1 || 44/13 || 2110,8 || -1,7 ||
| 1.7
|| 30 || 2181,8 || 60/17 || 2183,3 || -1,5 ||
|-
|| 31 || 2254,5 || 114/31 || 2254,4 || 0,1 ||
| 5
|| 32 || 2327,3 || 23/6 || 2326,3 || 1,0 ||
| 363.6
|| 33 || 2400,0 || 4/1 || 2400,0 || 0,0 ||
| 16/13
| 359.5
| 4.1
|- style="font-weight: bold"
| 6
| 436.4
| 9/7
| 435.1
| 1.3
|-
| 7
| 509.1
| 51/38
| 509.4
| −0.3
|- style="font-weight: bold"
| 8
| 581.8
| 7/5
| 582.5
| −0.7
|-
| 9
| 654.5
| 19/13
| 657.0
| −2.5
|-
| 10
| 727.3
| 35/23
| 726.9
| 0.4
|-
| 11
| 800.0
| 27/17
| 800.9
| −0.9
|-
| 12
| 872.7
| 53/32
| 873.5
| −0.8
|-
| 13
| 945.5
| 19/11
| 946.2
| −0.7
|- style="font-weight: bold"
| 14
| 1018.2
| 9/5
| 1017.6
| 0.6
|-
| 15
| 1090.9
| 15/8
| 1088.3
| 2.6
|- style="font-weight: bold; color: #080"
| 16
| 1163.6
| 45/23
| 1161.9
| 1.7
|- style="font-weight: bold; color: #080"
| 17
| 1236.4
| 49/24
| 1235.7
| 0.7
|-
| 18
| 1309.1
| 32/15
| 1311.7
| −2.6
|- style="font-weight: bold"
| 19
| 1381.8
| 20/9
| 1382.4
| −0.6
|-
| 20
| 1454.5
| 44/19
| 1453.8
| 0.7
|-
| 21
| 1527.3
| 29/12
| 1527.6
| −0.3
|-
| 22
| 1600.0
| 68/27
| 1599.1
| 0.9
|-
| 23
| 1672.7
| 21/8
| 1670.8
| 1.9
|-
| 24
| 1745.5
| 52/19
| 1743.0
| 2.5
|- style="font-weight: bold"
| 25
| 1818.2
| 20/7
| 1817.5
| 0.7
|-
| 26
| 1890.9
| 116/39
| 1887.1
| 3.8
|- style="font-weight: bold"
| 27
| 1963.6
| 28/9
| 1964.9
| −1.3
|-
| 28
| 2036.4
| 13/4
| 2040.5
| −4.1
|-
| 29
| 2109.1
| 44/13
| 2110.8
| −1.7
|-
| 30
| 2181.8
| 60/17
| 2183.3
| −1.5
|-
| 31
| 2254.5
| 114/31
| 2254.4
| 0.1
|-
| 32
| 2327.3
| 23/6
| 2326.3
| 1.0
|- style="font-weight: bold"
| 33
| 2400.0
| 4/1
| 2400.0
| 0.0
|}


===Music===  
== Harmonics ==
[[http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4|Equivocal Tuning]] by Ahornberg</pre></div>
{{Harmonics in equal
<h4>Original HTML content:</h4>
| steps = 33
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33ed4&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;33ed4&lt;/strong&gt; is the &lt;a class="wiki_link" href="/ED4"&gt;Equal Divisions of the Double Octave&lt;/a&gt; into 33 narrow chromatic semitones each of 72.727 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. It takes out every second step of &lt;a class="wiki_link" href="/33edo"&gt;33edo&lt;/a&gt; and falls between &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt; and &lt;a class="wiki_link" href="/17edo"&gt;17edo&lt;/a&gt;. So even degree 16 or degree 17 can play the role of the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt;, depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of equivocal tuning.&lt;br /&gt;
| num = 4
&lt;br /&gt;
| denom = 1
It has a &lt;a class="wiki_link" href="/9_5"&gt;9/5&lt;/a&gt; which is 0.6 cents sharp, a &lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt; which is 0.7 cents flat, and a &lt;a class="wiki_link" href="/9_7"&gt;9/7&lt;/a&gt; which is 1.3 cents sharp. Therefore it is closely related to &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt;, the &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; scale, although it has no pure &lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;, which is 11.1 cents flat.&lt;br /&gt;
}}
&lt;br /&gt;
{{Harmonics in equal
Furthermore it has some &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;, &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; and even &lt;a class="wiki_link" href="/23-limit"&gt;23-limit&lt;/a&gt; which are very close (most of them under or nearby 1 cent).&lt;br /&gt;
| steps = 33
&lt;br /&gt;
| num = 4
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;a name="x--Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Intervals&lt;/h3&gt;
| denom = 1
| start = 12
| collapsed = 1
}}


&lt;table class="wiki_table"&gt;
== Music ==
    &lt;tr&gt;
* [http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4 Equivocal Tuning] — Set of compositions by Ahornberg
        &lt;th&gt;degree&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;in cents&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;nearest JI&lt;br /&gt;
interval&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;in cents&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;difference&lt;br /&gt;
in cents&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;72,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;73,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;145,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;144,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;290,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;289,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;363,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;359,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;436,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;435,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;509,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;51/38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;509,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;581,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;582,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;654,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;657,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-2,5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;727,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;726,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;872,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;53/32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;873,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;945,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;946,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1018,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1017,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1088,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1163,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45/23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1161,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1236,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;49/24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1235,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1309,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1311,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-2,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1381,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1382,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1454,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1453,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1527,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;29/12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1527,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-0,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1600,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;68/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1599,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1672,7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1670,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1745,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52/19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1743,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2,5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1818,2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1817,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1890,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;116/39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1887,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3,8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1963,6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1964,9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2036,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2040,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-4,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2109,1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2110,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2181,8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;60/17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2183,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;-1,5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2254,5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;114/31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2254,4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2327,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2326,3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1,0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2400,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2400,0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0,0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
[[Category:Equal-step tuning]]
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Music&lt;/h3&gt;
{{todo|expand}}
&lt;a class="wiki_link_ext" href="http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4" rel="nofollow"&gt;Equivocal Tuning&lt;/a&gt; by Ahornberg&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 21:18, 31 July 2025

← 31ed4 33ed4 35ed4 →
Prime factorization 3 × 11
Step size 72.7273 ¢ 
Octave 17\33ed4 (1236.36 ¢)
Twelfth 26\33ed4 (1890.91 ¢)
Consistency limit 1
Distinct consistency limit 1

33ed4 is the Equal Divisions of the Double Octave into 33 narrow chromatic semitones each of 72.727 cents. It takes out every second step of 33edo and falls between 16edo and 17edo. So even degree 16 or degree 17 can play the role of the octave, depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of Equivocal Tuning.

It has a 9/5 which is 0.6 ¢ sharp, a 7/5 which is 0.7 ¢ flat, and a 9/7 which is 1.3 ¢ sharp. Therefore it is closely related to 13edt, the Bohlen–Pierce scale, although it has no pure 3/1, which is 11.1 cents flat. The lack of a pure fifth makes it also interesting.

Furthermore it has some 11-limit, 13-limit, 17-limit and even 23-limit which are very close (most of them under or nearby 1 ¢).

Intervals

Intervals of 33ed4
Degree Cents Nearest JI
interval
Cents Difference
in cents
1 72.7 24/23 73.7 −1.0
2 145.5 25/23 144.4 1.1
3 218.2 17/15 216.6 1.6
4 290.9 13/11 289.2 1.7
5 363.6 16/13 359.5 4.1
6 436.4 9/7 435.1 1.3
7 509.1 51/38 509.4 −0.3
8 581.8 7/5 582.5 −0.7
9 654.5 19/13 657.0 −2.5
10 727.3 35/23 726.9 0.4
11 800.0 27/17 800.9 −0.9
12 872.7 53/32 873.5 −0.8
13 945.5 19/11 946.2 −0.7
14 1018.2 9/5 1017.6 0.6
15 1090.9 15/8 1088.3 2.6
16 1163.6 45/23 1161.9 1.7
17 1236.4 49/24 1235.7 0.7
18 1309.1 32/15 1311.7 −2.6
19 1381.8 20/9 1382.4 −0.6
20 1454.5 44/19 1453.8 0.7
21 1527.3 29/12 1527.6 −0.3
22 1600.0 68/27 1599.1 0.9
23 1672.7 21/8 1670.8 1.9
24 1745.5 52/19 1743.0 2.5
25 1818.2 20/7 1817.5 0.7
26 1890.9 116/39 1887.1 3.8
27 1963.6 28/9 1964.9 −1.3
28 2036.4 13/4 2040.5 −4.1
29 2109.1 44/13 2110.8 −1.7
30 2181.8 60/17 2183.3 −1.5
31 2254.5 114/31 2254.4 0.1
32 2327.3 23/6 2326.3 1.0
33 2400.0 4/1 2400.0 0.0

Harmonics

Approximation of harmonics in 33ed4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +36.4 -11.0 +0.0 -22.7 +25.3 -23.4 +36.4 -22.1 +13.7 -5.9 -11.0
Relative (%) +50.0 -15.2 +0.0 -31.2 +34.8 -32.1 +50.0 -30.4 +18.8 -8.1 -15.2
Steps
(reduced)
17
(17)
26
(26)
33
(0)
38
(5)
43
(10)
46
(13)
50
(17)
52
(19)
55
(22)
57
(24)
59
(26)
Approximation of harmonics in 33ed4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -4.2 +13.0 -33.7 +0.0 -32.2 +14.3 -6.6 -22.7 -34.4 +30.5 +26.3
Relative (%) -5.7 +17.9 -46.4 +0.0 -44.3 +19.6 -9.1 -31.2 -47.3 +41.9 +36.1
Steps
(reduced)
61
(28)
63
(30)
64
(31)
66
(0)
67
(1)
69
(3)
70
(4)
71
(5)
72
(6)
74
(8)
75
(9)

Music