31ed4
Jump to navigation
Jump to search
Prime factorization
31 (prime)
Step size
77.4194¢
Octave
16\31ed4 (1238.71¢)
Twelfth
25\31ed4 (1935.48¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 29ed4 | 31ed4 | 33ed4 → |
31 equal divisions of the 4th harmonic (abbreviated 31ed4) is a nonoctave tuning system that divides the interval of 4/1 into 31 equal parts of about 77.4 ¢ each. Each step represents a frequency ratio of 41/31, or the 31st root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 77.419 | 21/20, 22/21, 26/25 |
2 | 154.839 | |
3 | 232.258 | |
4 | 309.677 | |
5 | 387.097 | |
6 | 464.516 | 17/13 |
7 | 541.935 | 15/11, 26/19 |
8 | 619.355 | 10/7 |
9 | 696.774 | 3/2 |
10 | 774.194 | 11/7, 14/9 |
11 | 851.613 | |
12 | 929.032 | |
13 | 1006.452 | |
14 | 1083.871 | |
15 | 1161.29 | |
16 | 1238.71 | |
17 | 1316.129 | 15/7 |
18 | 1393.548 | |
19 | 1470.968 | 7/3 |
20 | 1548.387 | 22/9 |
21 | 1625.806 | |
22 | 1703.226 | |
23 | 1780.645 | |
24 | 1858.065 | |
25 | 1935.484 | |
26 | 2012.903 | |
27 | 2090.323 | 10/3 |
28 | 2167.742 | 7/2 |
29 | 2245.161 | 11/3 |
30 | 2322.581 | |
31 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +38.7 | +33.5 | +0.0 | +0.8 | -5.2 | +37.6 | +38.7 | -10.4 | -37.9 | +29.3 | +33.5 |
Relative (%) | +50.0 | +43.3 | +0.0 | +1.0 | -6.7 | +48.6 | +50.0 | -13.4 | -49.0 | +37.9 | +43.3 | |
Steps (reduced) |
16 (16) |
25 (25) |
31 (0) |
36 (5) |
40 (9) |
44 (13) |
47 (16) |
49 (18) |
51 (20) |
54 (23) |
56 (25) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -27.6 | -1.1 | +34.3 | +0.0 | -27.5 | +28.3 | +12.2 | +0.8 | -6.3 | -9.4 | -8.9 |
Relative (%) | -35.7 | -1.4 | +44.3 | +0.0 | -35.6 | +36.6 | +15.7 | +1.0 | -8.1 | -12.1 | -11.5 | |
Steps (reduced) |
57 (26) |
59 (28) |
61 (30) |
62 (0) |
63 (1) |
65 (3) |
66 (4) |
67 (5) |
68 (6) |
69 (7) |
70 (8) |