33ed4: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>FREEZE
No edit summary
Fredg999 category edits (talk | contribs)
m Removing from Category:Ed4 using Cat-a-lot
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
'''33ed4''' is the [[ed4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[cent|cent]]s. It takes out every second step of [[33edo|33edo]] and falls between [[16edo|16edo]] and [[17edo|17edo]]. So even degree 16 or degree 17 can play the role of the [[Octave|octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of '''<span style="color: #00cc00;">E</span><span style="color: #00cc00;">quivocal Tuning</span>'''.
{{Infobox ET}}
'''33ed4''' is the [[ed4|Equal Divisions of the Double Octave]] into 33 narrow chromatic semitones each of 72.727 [[cent]]s. It takes out every second step of [[33edo]] and falls between [[16edo]] and [[17edo]]. So even degree 16 or degree 17 can play the role of the [[octave]], depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of '''<span style="color: #080;">Equivocal Tuning</span>'''.


It has a [[9/5|9/5]] which is 0.6 cents sharp, a [[7/5|7/5]] which is 0.7 cents flat, and a [[9/7|9/7]] which is 1.3 cents sharp. Therefore it is closely related to [[13edt|13edt]], the [[Bohlen-Pierce|Bohlen-Pierce]] scale, although it has no pure [[3/1|3/1]], which is 11.1 cents flat. The lack of a [[3/2|pure fifth]] makes it also interesting.
It has a [[9/5]] which is 0.6{{c}} sharp, a [[7/5]] which is 0.7{{c}} flat, and a [[9/7]] which is 1.3{{c}} sharp. Therefore it is closely related to [[13edt]], the [[Bohlen–Pierce scale]], although it has no pure [[3/1]], which is 11.1 cents flat. The lack of a [[3/2|pure fifth]] makes it also interesting.


Furthermore it has some [[11-limit|11-limit]], [[13-limit|13-limit]], [[17-limit|17-limit]] and even [[23-limit|23-limit]] which are very close (most of them under or nearby 1 cent).
Furthermore it has some [[11-limit]], [[13-limit]], [[17-limit]] and even [[23-limit]] which are very close (most of them under or nearby 1{{c}}).


===Intervals===
== Intervals ==
 
{| class="wikitable right-all mw-collapsible"
{| class="wikitable"
|+ style="font-size: 105%;" | Intervals of 33ed4
|-
! | degree
! | in cents
! | nearest JI
 
interval
! | in cents
! | difference
 
in cents
|-
| style="text-align:right;" | 1
| style="text-align:right;" | 72,7
| style="text-align:right;" | 24/23
| style="text-align:right;" | 73,7
| style="text-align:right;" | -1,0
|-
| style="text-align:right;" | 2
| style="text-align:right;" | 145,5
| style="text-align:right;" | 25/23
| style="text-align:right;" | 144,4
| style="text-align:right;" | 1,1
|-
| style="text-align:right;" | 3
| style="text-align:right;" | 218,2
| style="text-align:right;" | 17/15
| style="text-align:right;" | 216,6
| style="text-align:right;" | 1,6
|-
| style="text-align:right;" | 4
| style="text-align:right;" | 290,9
| style="text-align:right;" | 13/11
| style="text-align:right;" | 289,2
| style="text-align:right;" | 1,7
|-
| style="text-align:right;" | 5
| style="text-align:right;" | 363,6
| style="text-align:right;" | 16/13
| style="text-align:right;" | 359,5
| style="text-align:right;" | 4,1
|-
| style="text-align:right;" | '''6'''
| style="text-align:right;" | '''436,4'''
| style="text-align:right;" | '''9/7'''
| style="text-align:right;" | '''435,1'''
| style="text-align:right;" | '''1,3'''
|-
|-
| style="text-align:right;" | 7
! Degree
| style="text-align:right;" | 509,1
! Cents
| style="text-align:right;" | 51/38
! Nearest JI<br />interval
| style="text-align:right;" | 509,4
! Cents
| style="text-align:right;" | -0,3
! Difference<br />in cents
|-
|-
| style="text-align:right;" | '''8'''
| 1
| style="text-align:right;" | '''581,8'''
| 72.7
| style="text-align:right;" | '''7/5'''
| 24/23
| style="text-align:right;" | '''582,5'''
| 73.7
| style="text-align:right;" | '''-0,7'''
| −1.0
|-
|-
| style="text-align:right;" | 9
| 2
| style="text-align:right;" | 654,5
| 145.5
| style="text-align:right;" | 19/13
| 25/23
| style="text-align:right;" | 657,0
| 144.4
| style="text-align:right;" | -2,5
| 1.1
|-
|-
| style="text-align:right;" | 10
| 3
| style="text-align:right;" | 727,3
| 218.2
| style="text-align:right;" | 35/23
| 17/15
| style="text-align:right;" | 726,9
| 216.6
| style="text-align:right;" | 0,4
| 1.6
|-
|-
| style="text-align:right;" | 11
| 4
| style="text-align:right;" | 800,0
| 290.9
| style="text-align:right;" | 27/17
| 13/11
| style="text-align:right;" | 800,9
| 289.2
| style="text-align:right;" | -0,9
| 1.7
|-
|-
| style="text-align:right;" | 12
| 5
| style="text-align:right;" | 872,7
| 363.6
| style="text-align:right;" | 53/32
| 16/13
| style="text-align:right;" | 873,5
| 359.5
| style="text-align:right;" | -0,8
| 4.1
|- style="font-weight: bold"
| 6
| 436.4
| 9/7
| 435.1
| 1.3
|-
|-
| style="text-align:right;" | 13
| 7
| style="text-align:right;" | 945,5
| 509.1
| style="text-align:right;" | 19/11
| 51/38
| style="text-align:right;" | 946,2
| 509.4
| style="text-align:right;" | -0,7
| −0.3
|- style="font-weight: bold"
| 8
| 581.8
| 7/5
| 582.5
| −0.7
|-
|-
| style="text-align:right;" | '''14'''
| 9
| style="text-align:right;" | '''1018,2'''
| 654.5
| style="text-align:right;" | '''9/5'''
| 19/13
| style="text-align:right;" | '''1017,6'''
| 657.0
| style="text-align:right;" | '''0,6'''
| −2.5
|-
|-
| style="text-align:right;" | 15
| 10
| style="text-align:right;" | 1090,9
| 727.3
| style="text-align:right;" | 15/8
| 35/23
| style="text-align:right;" | 1088,3
| 726.9
| style="text-align:right;" | 2,6
| 0.4
|-
|-
| style="text-align:right;" | '''<span style="color: #00cc00;">16</span>'''
| 11
| style="text-align:right;" | '''<span style="color: #00cc00;">1163,6</span>'''
| 800.0
| style="text-align:right;" | '''<span style="color: #00cc00;">45/23</span>'''
| 27/17
| style="text-align:right;" | '''<span style="color: #00cc00;">1161,9</span>'''
| 800.9
| style="text-align:right;" | '''<span style="color: #00cc00;">1,7</span>'''
| −0.9
|-
|-
| style="text-align:right;" | '''<span style="color: #00cc00;">17</span>'''
| 12
| style="text-align:right;" | '''<span style="color: #00cc00;">1236,4</span>'''
| 872.7
| style="text-align:right;" | '''<span style="color: #00cc00;">49/24</span>'''
| 53/32
| style="text-align:right;" | '''<span style="color: #00cc00;">1235,7</span>'''
| 873.5
| style="text-align:right;" | '''<span style="color: #00cc00;">0,7</span>'''
| −0.8
|-
|-
| style="text-align:right;" | 18
| 13
| style="text-align:right;" | 1309,1
| 945.5
| style="text-align:right;" | 32/15
| 19/11
| style="text-align:right;" | 1311,7
| 946.2
| style="text-align:right;" | -2,6
| −0.7
|- style="font-weight: bold"
| 14
| 1018.2
| 9/5
| 1017.6
| 0.6
|-
|-
| style="text-align:right;" | '''19'''
| 15
| style="text-align:right;" | '''1381,8'''
| 1090.9
| style="text-align:right;" | '''20/9'''
| 15/8
| style="text-align:right;" | '''1382,4'''
| 1088.3
| style="text-align:right;" | '''-0,6'''
| 2.6
|- style="font-weight: bold; color: #080"
| 16
| 1163.6
| 45/23
| 1161.9
| 1.7
|- style="font-weight: bold; color: #080"
| 17
| 1236.4
| 49/24
| 1235.7
| 0.7
|-
|-
| style="text-align:right;" | 20
| 18
| style="text-align:right;" | 1454,5
| 1309.1
| style="text-align:right;" | 44/19
| 32/15
| style="text-align:right;" | 1453,8
| 1311.7
| style="text-align:right;" | 0,7
| −2.6
|- style="font-weight: bold"
| 19
| 1381.8
| 20/9
| 1382.4
| −0.6
|-
|-
| style="text-align:right;" | 21
| 20
| style="text-align:right;" | 1527,3
| 1454.5
| style="text-align:right;" | 29/12
| 44/19
| style="text-align:right;" | 1527,6
| 1453.8
| style="text-align:right;" | -0,3
| 0.7
|-
|-
| style="text-align:right;" | 22
| 21
| style="text-align:right;" | 1600,0
| 1527.3
| style="text-align:right;" | 68/27
| 29/12
| style="text-align:right;" | 1599,1
| 1527.6
| style="text-align:right;" | 0,9
| −0.3
|-
|-
| style="text-align:right;" | 23
| 22
| style="text-align:right;" | 1672,7
| 1600.0
| style="text-align:right;" | 21/8
| 68/27
| style="text-align:right;" | 1670,8
| 1599.1
| style="text-align:right;" | 1,9
| 0.9
|-
|-
| style="text-align:right;" | 24
| 23
| style="text-align:right;" | 1745,5
| 1672.7
| style="text-align:right;" | 52/19
| 21/8
| style="text-align:right;" | 1743,0
| 1670.8
| style="text-align:right;" | 2,5
| 1.9
|-
|-
| style="text-align:right;" | '''25'''
| 24
| style="text-align:right;" | '''1818,2'''
| 1745.5
| style="text-align:right;" | '''20/7'''
| 52/19
| style="text-align:right;" | '''1817,5'''
| 1743.0
| style="text-align:right;" | '''0,7'''
| 2.5
|- style="font-weight: bold"
| 25
| 1818.2
| 20/7
| 1817.5
| 0.7
|-
|-
| style="text-align:right;" | 26
| 26
| style="text-align:right;" | 1890,9
| 1890.9
| style="text-align:right;" | 116/39
| 116/39
| style="text-align:right;" | 1887,1
| 1887.1
| style="text-align:right;" | 3,8
| 3.8
|- style="font-weight: bold"
| 27
| 1963.6
| 28/9
| 1964.9
| −1.3
|-
|-
| style="text-align:right;" | '''27'''
| 28
| style="text-align:right;" | '''1963,6'''
| 2036.4
| style="text-align:right;" | '''28/9'''
| 13/4
| style="text-align:right;" | 1964,9
| 2040.5
| style="text-align:right;" | '''-1,3'''
| −4.1
|-
|-
| style="text-align:right;" | 28
| 29
| style="text-align:right;" | 2036,4
| 2109.1
| style="text-align:right;" | 13/4
| 44/13
| style="text-align:right;" | 2040,5
| 2110.8
| style="text-align:right;" | -4,1
| −1.7
|-
|-
| style="text-align:right;" | 29
| 30
| style="text-align:right;" | 2109,1
| 2181.8
| style="text-align:right;" | 44/13
| 60/17
| style="text-align:right;" | 2110,8
| 2183.3
| style="text-align:right;" | -1,7
| −1.5
|-
|-
| style="text-align:right;" | 30
| 31
| style="text-align:right;" | 2181,8
| 2254.5
| style="text-align:right;" | 60/17
| 114/31
| style="text-align:right;" | 2183,3
| 2254.4
| style="text-align:right;" | -1,5
| 0.1
|-
|-
| style="text-align:right;" | 31
| 32
| style="text-align:right;" | 2254,5
| 2327.3
| style="text-align:right;" | 114/31
| 23/6
| style="text-align:right;" | 2254,4
| 2326.3
| style="text-align:right;" | 0,1
| 1.0
|-
|- style="font-weight: bold"
| style="text-align:right;" | 32
| 33
| style="text-align:right;" | 2327,3
| 2400.0
| style="text-align:right;" | 23/6
| 4/1
| style="text-align:right;" | 2326,3
| 2400.0
| style="text-align:right;" | 1,0
| 0.0
|-
| style="text-align:right;" | '''33'''
| style="text-align:right;" | '''2400,0'''
| style="text-align:right;" | '''4/1'''
| style="text-align:right;" | '''2400,0'''
| style="text-align:right;" | '''0,0'''
|}
|}


===Music===
== Harmonics ==
[http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4 Equivocal Tuning] by Ahornberg
{{Harmonics in equal
[[Category:31edo]]
| steps = 33
[[Category:what_is]]
| num = 4
[[Category:wiki]]
| denom = 1
}}
{{Harmonics in equal
| steps = 33
| num = 4
| denom = 1
| start = 12
| collapsed = 1
}}
 
== Music ==
* [http://soundcloud.com/ahornberg/sets/equivocal-tuning-33ed4 Equivocal Tuning] — Set of compositions by Ahornberg
 
[[Category:Equal-step tuning]]
{{todo|expand}}

Latest revision as of 21:18, 31 July 2025

← 31ed4 33ed4 35ed4 →
Prime factorization 3 × 11
Step size 72.7273 ¢ 
Octave 17\33ed4 (1236.36 ¢)
Twelfth 26\33ed4 (1890.91 ¢)
Consistency limit 1
Distinct consistency limit 1

33ed4 is the Equal Divisions of the Double Octave into 33 narrow chromatic semitones each of 72.727 cents. It takes out every second step of 33edo and falls between 16edo and 17edo. So even degree 16 or degree 17 can play the role of the octave, depending on the actual melodic or harmonic situation in a given composition. So it can be seen as a kind of Equivocal Tuning.

It has a 9/5 which is 0.6 ¢ sharp, a 7/5 which is 0.7 ¢ flat, and a 9/7 which is 1.3 ¢ sharp. Therefore it is closely related to 13edt, the Bohlen–Pierce scale, although it has no pure 3/1, which is 11.1 cents flat. The lack of a pure fifth makes it also interesting.

Furthermore it has some 11-limit, 13-limit, 17-limit and even 23-limit which are very close (most of them under or nearby 1 ¢).

Intervals

Intervals of 33ed4
Degree Cents Nearest JI
interval
Cents Difference
in cents
1 72.7 24/23 73.7 −1.0
2 145.5 25/23 144.4 1.1
3 218.2 17/15 216.6 1.6
4 290.9 13/11 289.2 1.7
5 363.6 16/13 359.5 4.1
6 436.4 9/7 435.1 1.3
7 509.1 51/38 509.4 −0.3
8 581.8 7/5 582.5 −0.7
9 654.5 19/13 657.0 −2.5
10 727.3 35/23 726.9 0.4
11 800.0 27/17 800.9 −0.9
12 872.7 53/32 873.5 −0.8
13 945.5 19/11 946.2 −0.7
14 1018.2 9/5 1017.6 0.6
15 1090.9 15/8 1088.3 2.6
16 1163.6 45/23 1161.9 1.7
17 1236.4 49/24 1235.7 0.7
18 1309.1 32/15 1311.7 −2.6
19 1381.8 20/9 1382.4 −0.6
20 1454.5 44/19 1453.8 0.7
21 1527.3 29/12 1527.6 −0.3
22 1600.0 68/27 1599.1 0.9
23 1672.7 21/8 1670.8 1.9
24 1745.5 52/19 1743.0 2.5
25 1818.2 20/7 1817.5 0.7
26 1890.9 116/39 1887.1 3.8
27 1963.6 28/9 1964.9 −1.3
28 2036.4 13/4 2040.5 −4.1
29 2109.1 44/13 2110.8 −1.7
30 2181.8 60/17 2183.3 −1.5
31 2254.5 114/31 2254.4 0.1
32 2327.3 23/6 2326.3 1.0
33 2400.0 4/1 2400.0 0.0

Harmonics

Approximation of harmonics in 33ed4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +36.4 -11.0 +0.0 -22.7 +25.3 -23.4 +36.4 -22.1 +13.7 -5.9 -11.0
Relative (%) +50.0 -15.2 +0.0 -31.2 +34.8 -32.1 +50.0 -30.4 +18.8 -8.1 -15.2
Steps
(reduced)
17
(17)
26
(26)
33
(0)
38
(5)
43
(10)
46
(13)
50
(17)
52
(19)
55
(22)
57
(24)
59
(26)
Approximation of harmonics in 33ed4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -4.2 +13.0 -33.7 +0.0 -32.2 +14.3 -6.6 -22.7 -34.4 +30.5 +26.3
Relative (%) -5.7 +17.9 -46.4 +0.0 -44.3 +19.6 -9.1 -31.2 -47.3 +41.9 +36.1
Steps
(reduced)
61
(28)
63
(30)
64
(31)
66
(0)
67
(1)
69
(3)
70
(4)
71
(5)
72
(6)
74
(8)
75
(9)

Music