Hemififths/Chords: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 287999812 - Original comment: **
Fredg999 (talk | contribs)
m Categories (todo)
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Below are listed the [[11-odd-limit]] [[dyadic chord]]s of [[11-limit]] [[hemififths]] temperament. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by [[540/539]] are [[swetismic chords|swetismic]], by [[441/440]] [[werckismic chords|werckismic]], by [[896/891]] [[pentacircle chords|pentacircle]], by [[243/242]] [[rastmic chords|rastmic]], and by [[1344/1331]] [[hemimin chords|hemimin]]. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled [[jove chords|jove]]. Those requiring both 441/440 and 896/891 are labeled [[pele chords|pele]]. Those requiring any two of 243/242, 896/891 or 1344/1331 are labeled [[parahemif chords|parahemif]]. If the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled ''hemififths''.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-21 15:02:00 UTC</tt>.<br>
: The original revision id was <tt>287999812</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Breedsmic temperaments#Hemififths|hemififths temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label "nofives" refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. "Nofives" refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled "hemififths".


A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has [[mos scale]]s of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.


=Triads=
Chords are named with ups and downs, using pergen #4 (P8, P5/2) in the [http://tallkite.com/misc_files/notation%20guide%20for%20rank-2%20pergens.pdf notation guide for rank-2 pergens]. One up is 7 generators, which is a half-sharp. The tilde ~ means mid, half-way between major and minor. ~4 = ^4 = vA4 and ~5 = v5 = ^d5. The comma (the actual punctuation mark) is pronounced "add", thus C~,7 is "C mid add 7". To facilitate chord naming, lifts and drops are also used. One lift is -17 generators, a half-diminished second. Enharmonic equivalences: vvA1 and v\m2. Cents: ^1 = 50¢ + 3.5c and /1 = 50¢ - 8.5c, where c equals the amount in cents the tempered fifth exceeds 700¢. /1 = ~81/80 = ~64/63 and ^1 = ~33/32. To convert to 41edo, ^1 = 2\41 and /1 = 1\41.
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2 || 1-11/9-3/2 || rastmic ||
|| 2 || 0-1-3 || 1-11/9-11/6 || utonal ||
|| 3 || 0-2-3 || 1-3/2-11/6 || otonal ||
|| 4 || 0-1-4 || 1-11/9-9/8 || rastmic ||
|| 5 || 0-2-4 || 1-3/2-9/8 || ambitonal ||
|| 6 || 0-3-4 || 1-11/6-9/8 || rastmic ||
|| 7 || 0-1-5 || 1-11/9-11/8 || utonal ||
|| 8 || 0-2-5 || 1-3/2-11/8 || otonal ||
|| 9 || 0-3-5 || 1-11/6-11/8 || utonal ||
|| 10 || 0-4-5 || 1-9/8-11/8 || otonal ||
|| 11 || 0-3-8 || 1-11/6-14/11 || hemimin ||
|| 12 || 0-4-8 || 1-9/8-14/11 || pentacircle ||
|| 13 || 0-5-8 || 1-11/8-14/11 || hemimin ||
|| 14 || 0-1-9 || 1-11/9-14/9 || otonal ||
|| 15 || 0-4-9 || 1-9/8-14/9 || pentacircle ||
|| 16 || 0-5-9 || 1-11/8-14/9 || pentacircle ||
|| 17 || 0-8-9 || 1-14/11-14/9 || utonal ||
|| 18 || 0-2-11 || 1-3/2-7/6 || otonal ||
|| 19 || 0-3-11 || 1-11/6-7/6 || otonal ||
|| 20 || 0-8-11 || 1-14/11-7/6 || utonal ||
|| 21 || 0-9-11 || 1-14/9-7/6 || utonal ||
|| 22 || 0-1-12 || 1-11/9-10/7 || swetismic ||
|| 23 || 0-3-12 || 1-11/6-10/7 || swetismic ||
|| 24 || 0-4-12 || 1-9/8-10/7 || werckismic ||
|| 25 || 0-8-12 || 1-14/11-10/7 || werckismic ||
|| 26 || 0-9-12 || 1-14/9-10/7 || swetismic ||
|| 27 || 0-11-12 || 1-7/6-10/7 || swetismic ||
|| 28 || 0-1-13 || 1-11/9-7/4 || werckismic ||
|| 29 || 0-2-13 || 1-3/2-7/4 || otonal ||
|| 30 || 0-4-13 || 1-9/8-7/4 || otonal ||
|| 31 || 0-5-13 || 1-11/8-7/4 || otonal ||
|| 32 || 0-8-13 || 1-14/11-7/4 || utonal ||
|| 33 || 0-9-13 || 1-14/9-7/4 || utonal ||
|| 34 || 0-11-13 || 1-7/6-7/4 || utonal ||
|| 35 || 0-12-13 || 1-10/7-7/4 || werckismic ||
|| 36 || 0-8-20 || 1-14/11-20/11 || otonal ||
|| 37 || 0-9-20 || 1-14/9-20/11 || swetismic ||
|| 38 || 0-11-20 || 1-7/6-20/11 || swetismic ||
|| 39 || 0-12-20 || 1-10/7-20/11 || utonal ||
|| 40 || 0-1-21 || 1-11/9-10/9 || otonal ||
|| 41 || 0-8-21 || 1-14/11-10/9 || werckismic ||
|| 42 || 0-9-21 || 1-14/9-10/9 || otonal ||
|| 43 || 0-12-21 || 1-10/7-10/9 || utonal ||
|| 44 || 0-13-21 || 1-7/4-10/9 || werckismic ||
|| 45 || 0-20-21 || 1-20/11-10/9 || utonal ||
|| 46 || 0-2-23 || 1-3/2-5/3 || otonal ||
|| 47 || 0-3-23 || 1-11/6-5/3 || otonal ||
|| 48 || 0-11-23 || 1-7/6-5/3 || otonal ||
|| 49 || 0-12-23 || 1-10/7-5/3 || utonal ||
|| 50 || 0-20-23 || 1-20/11-5/3 || utonal ||
|| 51 || 0-21-23 || 1-10/9-5/3 || utonal ||
|| 52 || 0-2-25 || 1-3/2-5/4 || otonal ||
|| 53 || 0-4-25 || 1-9/8-5/4 || otonal ||
|| 54 || 0-5-25 || 1-11/8-5/4 || otonal ||
|| 55 || 0-12-25 || 1-10/7-5/4 || utonal ||
|| 56 || 0-13-25 || 1-7/4-5/4 || otonal ||
|| 57 || 0-20-25 || 1-20/11-5/4 || utonal ||
|| 58 || 0-21-25 || 1-10/9-5/4 || utonal ||
|| 59 || 0-23-25 || 1-5/3-5/4 || utonal ||


=Tetrads=
The ''As harmonics or subharmonics'' column describes otonal chords as harmonics and utonal chords as subharmonics.
|| Number || Chord || Transversal || Type ||
|| 1 || 0-1-2-3 || 1-11/9-3/2-11/6 || rastmic ||
|| 2 || 0-1-2-4 || 1-11/9-3/2-9/8 || rastmic ||
|| 3 || 0-1-3-4 || 1-11/9-11/6-9/8 || rastmic ||
|| 4 || 0-2-3-4 || 1-3/2-11/6-9/8 || rastmic ||
|| 5 || 0-1-2-5 || 1-11/9-3/2-11/8 || rastmic ||
|| 6 || 0-1-3-5 || 1-11/9-11/6-11/8 || utonal ||
|| 7 || 0-2-3-5 || 1-3/2-11/6-11/8 || ambitonal ||
|| 8 || 0-1-4-5 || 1-11/9-9/8-11/8 || rastmic ||
|| 9 || 0-2-4-5 || 1-3/2-9/8-11/8 || otonal ||
|| 10 || 0-3-4-5 || 1-11/6-9/8-11/8 || rastmic ||
|| 11 || 0-3-4-8 || 1-11/6-9/8-14/11 || nofives ||
|| 12 || 0-3-5-8 || 1-11/6-11/8-14/11 || hemimin ||
|| 13 || 0-4-5-8 || 1-9/8-11/8-14/11 || nofives ||
|| 14 || 0-1-4-9 || 1-11/9-9/8-14/9 || nofives ||
|| 15 || 0-1-5-9 || 1-11/9-11/8-14/9 || pentacircle ||
|| 16 || 0-4-5-9 || 1-9/8-11/8-14/9 || pentacircle ||
|| 17 || 0-4-8-9 || 1-9/8-14/11-14/9 || pentacircle ||
|| 18 || 0-5-8-9 || 1-11/8-14/11-14/9 || nofives ||
|| 19 || 0-2-3-11 || 1-3/2-11/6-7/6 || otonal ||
|| 20 || 0-3-8-11 || 1-11/6-14/11-7/6 || hemimin ||
|| 21 || 0-8-9-11 || 1-14/11-14/9-7/6 || utonal ||
|| 22 || 0-1-3-12 || 1-11/9-11/6-10/7 || swetismic ||
|| 23 || 0-1-4-12 || 1-11/9-9/8-10/7 || jove ||
|| 24 || 0-3-4-12 || 1-11/6-9/8-10/7 || jove ||
|| 25 || 0-3-8-12 || 1-11/6-14/11-10/7 || hemififths ||
|| 26 || 0-4-8-12 || 1-9/8-14/11-10/7 || pele ||
|| 27 || 0-1-9-12 || 1-11/9-14/9-10/7 || swetismic ||
|| 28 || 0-4-9-12 || 1-9/8-14/9-10/7 || hemififths ||
|| 29 || 0-8-9-12 || 1-14/11-14/9-10/7 || jove ||
|| 30 || 0-3-11-12 || 1-11/6-7/6-10/7 || swetismic ||
|| 31 || 0-8-11-12 || 1-14/11-7/6-10/7 || jove ||
|| 32 || 0-9-11-12 || 1-14/9-7/6-10/7 || swetismic ||
|| 33 || 0-1-2-13 || 1-11/9-3/2-7/4 || jove ||
|| 34 || 0-1-4-13 || 1-11/9-9/8-7/4 || jove ||
|| 35 || 0-2-4-13 || 1-3/2-9/8-7/4 || otonal ||
|| 36 || 0-1-5-13 || 1-11/9-11/8-7/4 || werckismic ||
|| 37 || 0-2-5-13 || 1-3/2-11/8-7/4 || otonal ||
|| 38 || 0-4-5-13 || 1-9/8-11/8-7/4 || otonal ||
|| 39 || 0-4-8-13 || 1-9/8-14/11-7/4 || pentacircle ||
|| 40 || 0-5-8-13 || 1-11/8-14/11-7/4 || hemimin ||
|| 41 || 0-1-9-13 || 1-11/9-14/9-7/4 || werckismic ||
|| 42 || 0-4-9-13 || 1-9/8-14/9-7/4 || pentacircle ||
|| 43 || 0-5-9-13 || 1-11/8-14/9-7/4 || pentacircle ||
|| 44 || 0-8-9-13 || 1-14/11-14/9-7/4 || utonal ||
|| 45 || 0-2-11-13 || 1-3/2-7/6-7/4 || ambitonal ||
|| 46 || 0-8-11-13 || 1-14/11-7/6-7/4 || utonal ||
|| 47 || 0-9-11-13 || 1-14/9-7/6-7/4 || utonal ||
|| 48 || 0-1-12-13 || 1-11/9-10/7-7/4 || jove ||
|| 49 || 0-4-12-13 || 1-9/8-10/7-7/4 || werckismic ||
|| 50 || 0-8-12-13 || 1-14/11-10/7-7/4 || werckismic ||
|| 51 || 0-9-12-13 || 1-14/9-10/7-7/4 || jove ||
|| 52 || 0-11-12-13 || 1-7/6-10/7-7/4 || jove ||
|| 53 || 0-8-9-20 || 1-14/11-14/9-20/11 || swetismic ||
|| 54 || 0-8-11-20 || 1-14/11-7/6-20/11 || swetismic ||
|| 55 || 0-9-11-20 || 1-14/9-7/6-20/11 || swetismic ||
|| 56 || 0-8-12-20 || 1-14/11-10/7-20/11 || werckismic ||
|| 57 || 0-9-12-20 || 1-14/9-10/7-20/11 || swetismic ||
|| 58 || 0-11-12-20 || 1-7/6-10/7-20/11 || swetismic ||
|| 59 || 0-1-9-21 || 1-11/9-14/9-10/9 || otonal ||
|| 60 || 0-8-9-21 || 1-14/11-14/9-10/9 || werckismic ||
|| 61 || 0-1-12-21 || 1-11/9-10/7-10/9 || swetismic ||
|| 62 || 0-8-12-21 || 1-14/11-10/7-10/9 || werckismic ||
|| 63 || 0-9-12-21 || 1-14/9-10/7-10/9 || swetismic ||
|| 64 || 0-1-13-21 || 1-11/9-7/4-10/9 || werckismic ||
|| 65 || 0-8-13-21 || 1-14/11-7/4-10/9 || werckismic ||
|| 66 || 0-9-13-21 || 1-14/9-7/4-10/9 || werckismic ||
|| 67 || 0-12-13-21 || 1-10/7-7/4-10/9 || werckismic ||
|| 68 || 0-8-20-21 || 1-14/11-20/11-10/9 || werckismic ||
|| 69 || 0-9-20-21 || 1-14/9-20/11-10/9 || swetismic ||
|| 70 || 0-12-20-21 || 1-10/7-20/11-10/9 || utonal ||
|| 71 || 0-2-3-23 || 1-3/2-11/6-5/3 || otonal ||
|| 72 || 0-2-11-23 || 1-3/2-7/6-5/3 || otonal ||
|| 73 || 0-3-11-23 || 1-11/6-7/6-5/3 || otonal ||
|| 74 || 0-3-12-23 || 1-11/6-10/7-5/3 || swetismic ||
|| 75 || 0-11-12-23 || 1-7/6-10/7-5/3 || swetismic ||
|| 76 || 0-11-20-23 || 1-7/6-20/11-5/3 || swetismic ||
|| 77 || 0-12-20-23 || 1-10/7-20/11-5/3 || utonal ||
|| 78 || 0-12-21-23 || 1-10/7-10/9-5/3 || utonal ||
|| 79 || 0-20-21-23 || 1-20/11-10/9-5/3 || utonal ||
|| 80 || 0-2-4-25 || 1-3/2-9/8-5/4 || otonal ||
|| 81 || 0-2-5-25 || 1-3/2-11/8-5/4 || otonal ||
|| 82 || 0-4-5-25 || 1-9/8-11/8-5/4 || otonal ||
|| 83 || 0-4-12-25 || 1-9/8-10/7-5/4 || werckismic ||
|| 84 || 0-2-13-25 || 1-3/2-7/4-5/4 || otonal ||
|| 85 || 0-4-13-25 || 1-9/8-7/4-5/4 || otonal ||
|| 86 || 0-5-13-25 || 1-11/8-7/4-5/4 || otonal ||
|| 87 || 0-12-13-25 || 1-10/7-7/4-5/4 || werckismic ||
|| 88 || 0-12-20-25 || 1-10/7-20/11-5/4 || utonal ||
|| 89 || 0-12-21-25 || 1-10/7-10/9-5/4 || utonal ||
|| 90 || 0-13-21-25 || 1-7/4-10/9-5/4 || werckismic ||
|| 91 || 0-20-21-25 || 1-20/11-10/9-5/4 || utonal ||
|| 92 || 0-2-23-25 || 1-3/2-5/3-5/4 || ambitonal ||
|| 93 || 0-12-23-25 || 1-10/7-5/3-5/4 || utonal ||
|| 94 || 0-20-23-25 || 1-20/11-5/3-5/4 || utonal ||
|| 95 || 0-21-23-25 || 1-10/9-5/3-5/4 || utonal ||


=Pentads=
{| class="wikitable center-all"
|| Number || Chord || Transversal || Type ||
|+Hemififth's genchain
|| 1 || 0-1-2-3-4 || 1-11/9-3/2-11/6-9/8 || rastmic ||
! Genspan
|| 2 || 0-1-2-3-5 || 1-11/9-3/2-11/6-11/8 || rastmic ||
! 0
|| 3 || 0-1-2-4-5 || 1-11/9-3/2-9/8-11/8 || rastmic ||
! 1
|| 4 || 0-1-3-4-5 || 1-11/9-11/6-9/8-11/8 || rastmic ||
! 2
|| 5 || 0-2-3-4-5 || 1-3/2-11/6-9/8-11/8 || rastmic ||
! 3
|| 6 || 0-3-4-5-8 || 1-11/6-9/8-11/8-14/11 || nofives ||
! 4
|| 7 || 0-1-4-5-9 || 1-11/9-9/8-11/8-14/9 || nofives ||
! 5
|| 8 || 0-4-5-8-9 || 1-9/8-11/8-14/11-14/9 || nofives ||
! 6
|| 9 || 0-1-3-4-12 || 1-11/9-11/6-9/8-10/7 || jove ||
! 7
|| 10 || 0-3-4-8-12 || 1-11/6-9/8-14/11-10/7 || hemififths ||
! 8
|| 11 || 0-1-4-9-12 || 1-11/9-9/8-14/9-10/7 || hemififths ||
! 9
|| 12 || 0-4-8-9-12 || 1-9/8-14/11-14/9-10/7 || hemififths ||
! 10
|| 13 || 0-3-8-11-12 || 1-11/6-14/11-7/6-10/7 || hemififths ||
! 11
|| 14 || 0-8-9-11-12 || 1-14/11-14/9-7/6-10/7 || jove ||
! 12
|| 15 || 0-1-2-4-13 || 1-11/9-3/2-9/8-7/4 || jove ||
! 13
|| 16 || 0-1-2-5-13 || 1-11/9-3/2-11/8-7/4 || jove ||
! …
|| 17 || 0-1-4-5-13 || 1-11/9-9/8-11/8-7/4 || jove ||
! 20
|| 18 || 0-2-4-5-13 || 1-3/2-9/8-11/8-7/4 || otonal ||
! 21
|| 19 || 0-4-5-8-13 || 1-9/8-11/8-14/11-7/4 || nofives ||
! …
|| 20 || 0-1-4-9-13 || 1-11/9-9/8-14/9-7/4 || hemififths ||
! 23
|| 21 || 0-1-5-9-13 || 1-11/9-11/8-14/9-7/4 || pele ||
! …
|| 22 || 0-4-5-9-13 || 1-9/8-11/8-14/9-7/4 || pentacircle ||
! 25
|| 23 || 0-4-8-9-13 || 1-9/8-14/11-14/9-7/4 || pentacircle ||
|-
|| 24 || 0-5-8-9-13 || 1-11/8-14/11-14/9-7/4 || nofives ||
! Cents (41edo)
|| 25 || 0-8-9-11-13 || 1-14/11-14/9-7/6-7/4 || utonal ||
| 0
|| 26 || 0-1-4-12-13 || 1-11/9-9/8-10/7-7/4 || jove ||
| 351
|| 27 || 0-4-8-12-13 || 1-9/8-14/11-10/7-7/4 || pele ||
| 702
|| 28 || 0-1-9-12-13 || 1-11/9-14/9-10/7-7/4 || jove ||
| 1054
|| 29 || 0-4-9-12-13 || 1-9/8-14/9-10/7-7/4 || hemififths ||
| 205
|| 30 || 0-8-9-12-13 || 1-14/11-14/9-10/7-7/4 || jove ||
| 556
|| 31 || 0-8-11-12-13 || 1-14/11-7/6-10/7-7/4 || jove ||
| 907
|| 32 || 0-9-11-12-13 || 1-14/9-7/6-10/7-7/4 || jove ||
| 59
|| 33 || 0-8-9-11-20 || 1-14/11-14/9-7/6-20/11 || swetismic ||
| 410
|| 34 || 0-8-9-12-20 || 1-14/11-14/9-10/7-20/11 || jove ||
| 761
|| 35 || 0-8-11-12-20 || 1-14/11-7/6-10/7-20/11 || jove ||
| 1112
|| 36 || 0-9-11-12-20 || 1-14/9-7/6-10/7-20/11 || swetismic ||
| 263
|| 37 || 0-1-9-12-21 || 1-11/9-14/9-10/7-10/9 || swetismic ||
| 615
|| 38 || 0-8-9-12-21 || 1-14/11-14/9-10/7-10/9 || jove ||
| 966
|| 39 || 0-1-9-13-21 || 1-11/9-14/9-7/4-10/9 || werckismic ||
|
|| 40 || 0-8-9-13-21 || 1-14/11-14/9-7/4-10/9 || werckismic ||
| 1024
|| 41 || 0-1-12-13-21 || 1-11/9-10/7-7/4-10/9 || jove ||
| 176
|| 42 || 0-8-12-13-21 || 1-14/11-10/7-7/4-10/9 || werckismic ||
|
|| 43 || 0-9-12-13-21 || 1-14/9-10/7-7/4-10/9 || jove ||
| 878
|| 44 || 0-8-9-20-21 || 1-14/11-14/9-20/11-10/9 || jove ||
|
|| 45 || 0-8-12-20-21 || 1-14/11-10/7-20/11-10/9 || werckismic ||
| 380
|| 46 || 0-9-12-20-21 || 1-14/9-10/7-20/11-10/9 || swetismic ||
|-
|| 47 || 0-2-3-11-23 || 1-3/2-11/6-7/6-5/3 || otonal ||
! Ratio
|| 48 || 0-3-11-12-23 || 1-11/6-7/6-10/7-5/3 || swetismic ||
| 1/1
|| 49 || 0-11-12-20-23 || 1-7/6-10/7-20/11-5/3 || swetismic ||
| 11/9<br>16/13
|| 50 || 0-12-20-21-23 || 1-10/7-20/11-10/9-5/3 || utonal ||
| 3/2
|| 51 || 0-2-4-5-25 || 1-3/2-9/8-11/8-5/4 || otonal ||
| 11/6<br>24/13
|| 52 || 0-2-4-13-25 || 1-3/2-9/8-7/4-5/4 || otonal ||
| 9/8
|| 53 || 0-2-5-13-25 || 1-3/2-11/8-7/4-5/4 || otonal ||
| 11/8<br>18/13
|| 54 || 0-4-5-13-25 || 1-9/8-11/8-7/4-5/4 || otonal ||
| 27/16<br>22/13
|| 55 || 0-4-12-13-25 || 1-9/8-10/7-7/4-5/4 || werckismic ||
| 28/27<br>33/32
|| 56 || 0-12-13-21-25 || 1-10/7-7/4-10/9-5/4 || werckismic ||
| 14/11
|| 57 || 0-12-20-21-25 || 1-10/7-20/11-10/9-5/4 || utonal ||
| 14/9
|| 58 || 0-12-20-23-25 || 1-10/7-20/11-5/3-5/4 || utonal ||
| 40/21<br>21/11
|| 59 || 0-12-21-23-25 || 1-10/7-10/9-5/3-5/4 || utonal ||
| 7/6
|| 60 || 0-20-21-23-25 || 1-20/11-10/9-5/3-5/4 || utonal ||
| 10/7
| 7/4
|
| 20/11
| 10/9
|
| 5/3
|
| 5/4
|-
! Interval
| P1
| ~3
| P5
| ~7
| M2
| ~4<br>\b5
| M6
| ^1<br>\m2
| M3
| ^5<br>\m6
| M7
| ^M2<br>\m3
| A4<br>\~5
| ^M6<br>\m7
|
| A6<br>\~7
| ^A1<br>\M2
|
| ^A5<br>\M6
|
| ^A2<br>\M3
|}
{{Todo|complete table|inline=1}}


=Hexads=
== Triads ==
|| Number || Chord || Transversal || Type ||
{| class="wikitable center-1"
|| 1 || 0-1-2-3-4-5 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic ||
|-
|| 2 || 0-1-2-4-5-13 || 1-11/9-3/2-9/8-11/8-7/4 || jove ||
! #
|| 3 || 0-1-4-5-9-13 || 1-11/9-9/8-11/8-14/9-7/4 || hemififths ||
! Genspans
|| 4 || 0-4-5-8-9-13 || 1-9/8-11/8-14/11-14/9-7/4 || nofives ||
! Transversal
|| 5 || 0-1-4-9-12-13 || 1-11/9-9/8-14/9-10/7-7/4 || hemififths ||
! Type
|| 6 || 0-4-8-9-12-13 || 1-9/8-14/11-14/9-10/7-7/4 || hemififths ||
! Name
|| 7 || 0-8-9-11-12-13 || 1-14/11-14/9-7/6-10/7-7/4 || jove ||
! Inversion
|| 8 || 0-8-9-11-12-20 || 1-14/11-14/9-7/6-10/7-20/11 || jove ||
! As harmonics<br>or subharmonics
|| 9 || 0-1-9-12-13-21 || 1-11/9-14/9-10/7-7/4-10/9 || jove ||
|-
|| 10 || 0-8-9-12-13-21 || 1-14/11-14/9-10/7-7/4-10/9 || jove ||
| 1
|| 11 || 0-8-9-12-20-21 || 1-14/11-14/9-10/7-20/11-10/9 || jove ||
| 0-1-2
|| 12 || 0-2-4-5-13-25 || 1-3/2-9/8-11/8-7/4-5/4 || otonal ||
| 1-11/9-3/2
|| 13 || 0-12-20-21-23-25 || 1-10/7-20/11-10/9-5/3-5/4 || utonal ||
| rastmic
</pre></div>
| C~
<h4>Original HTML content:</h4>
|
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chords of hemififths&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Below are listed the &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic chords&lt;/a&gt; of 11-limit &lt;a class="wiki_link" href="/Breedsmic%20temperaments#Hemififths"&gt;hemififths temperament&lt;/a&gt;. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove, and those requiring both 441/440 and 896/891 are labeled pele. The label &amp;quot;nofives&amp;quot; refers to the unnamed rank-three temperament tempering out 243/242, 896/891 and 1344/1331, and if any two of these are needed the chord is so labled. &amp;quot;Nofives&amp;quot; refers to the fact that it is in essence a no-fives version of hemififths; if the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled &amp;quot;hemififths&amp;quot;.&lt;br /&gt;
|
&lt;br /&gt;
|-
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has MOS of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.&lt;br /&gt;
| 2
&lt;br /&gt;
| 0-1-3
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Triads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Triads&lt;/h1&gt;
| 1-11/9-11/6
| utonal
| C~7no5
|  
| 1/(11:9:6)
|-
| 3
| 0-2-3
| 1-3/2-11/6
| otonal
| C~7no3
|
| 6:9:11
|-
| 4
| 0-1-4
| 1-11/9-9/8
| rastmic
| C~,9no5
|
|
|-
| 5
| 0-2-4
| 1-3/2-9/8
| ambitonal
| C2 ''or'' C4
| 1-4/3-3/2
|
|-
| 6
| 0-3-4
| 1-11/6-9/8
| rastmic
| C~9no35
|
|
|-
| 7
| 0-1-5
| 1-11/9-11/8
| utonal
| C~(\b5)
|  
| 1/(11:9:8)
|-
| 8
| 0-2-5
| 1-3/2-11/8
| otonal
| C~7sus4no5
| 1-4/3-11/6
| 6:8:11
|-
| 9
| 0-3-5
| 1-11/6-11/8
| utonal
| C~2
| 1-12/11-3/2
| 1/(12:11:8)
|-
| 10
| 0-4-5
| 1-9/8-11/8
| otonal
| C~,7no5
| 1-11/9-16/9
| 9:11:16
|-
| 11
| 0-3-8
| 1-11/6-14/11
| hemimin
| C,~7no5
|
|
|-
| 12
| 0-4-8
| 1-9/8-14/11
| pentacircle
| C,9no5
|
|
|-
| 13
| 0-5-8
| 1-11/8-14/11
| hemimin
| C(\b5)
|  
|  
|-
| 14
| 0-1-9
| 1-11/9-14/9
| otonal
| C~(^5)
|
| 9:11:14
|-
| 15
| 0-4-9
| 1-9/8-14/9
| pentacircle
| C7~4no5
| 1-11/8-16/9
|
|-
| 16
| 0-5-9
| 1-11/8-14/9
| pentacircle
| C2(~5) ''or''<br>C/,7no5
| 1-9/8-13/9<br>1-9/7-16/9
|
|-
| 17
| 0-8-9
| 1-14/11-14/9
| utonal
| C(^5)
|  
| 1/(14:11:9)
|-
| 18
| 0-2-11
| 1-3/2-7/6
| otonal
| C\m
|
| 6:7:9
|-
| 19
| 0-3-11
| 1-11/6-7/6
| otonal
| C\m~7no5
|
| 6:7:11
|-
| 20
| 0-8-11
| 1-14/11-7/6
| utonal
| C~2/6
| 1-12/11-12/7
| 1/(12:11:7)
|-
| 21
| 0-9-11
| 1-14/9-7/6
| utonal
| C/
| 1-9/7-3/2
| 1/(9:7:6)
|-
| 22
| 0-1-12
| 1-11/9-10/7
| swetismic
| C~(\~5)
|
|
|-
| 23
| 0-3-12
| 1-11/6-10/7
| swetismic
| C/(b5)
| 1-9/7-7/5
|
|-
| 24
| 0-4-12
| 1-9/8-10/7
| werckismic
| C2(\~5)
|
|
|-
| 25
| 0-8-12
| 1-14/11-10/7
| werckismic
| C(\~5)
|
|
|-
| 26
| 0-9-12
| 1-14/9-10/7
| swetismic
| C~2(b5)
| 1-12/11-7/5
|
|-
| 27
| 0-11-12
| 1-7/6-10/7
| swetismic
| C\m(\~5)
|
|
|-
| 28
| 0-1-13
| 1-11/9-7/4
| werckismic
| C~,\7no5
|  
|  
|-
| 29
| 0-2-13
| 1-3/2-7/4
| otonal
| C\7no3
|  
| 4:6:7
|-
| 30
| 0-4-13
| 1-9/8-7/4
| otonal
| C\9no35
|
| 4:7:9
|-
| 31
| 0-5-13
| 1-11/8-7/4
| otonal
| C(~5)
| 1-14/11-16/11
| 8:11:14
|-
| 32
| 0-8-13
| 1-14/11-7/4
| utonal
| C,\7
|  
| 1/(14:11:8)
|-
| 33
| 0-9-13
| 1-14/9-7/4
| utonal
| C/,2no5
| 1-9/8-9/7
| 1/(9:8:7)
|-
| 34
| 0-11-13
| 1-7/6-7/4
| utonal
| C\m7no5
|
| 1/(7:6:4)
|-
| 35
| 0-12-13
| 1-10/7-7/4
| werckismic
| C~(b5)
| 1-11/9-7/5
|  
|-
| 36
| 0-8-20
| 1-14/11-20/11
| otonal
| C,\~7no5
|
| 11:14:20
|-
| 37
| 0-9-20
| 1-14/9-20/11
| swetismic
|
|
|
|-
| 38
| 0-11-20
| 1-7/6-20/11
| swetismic
| C\m\~7no5
|
|
|-
| 39
| 0-12-20
| 1-10/7-20/11
| utonal
| C(b5)
|  
| 1/(20:14:11)
|-
| 40
| 0-1-21
| 1-11/9-10/9
| otonal
| C~,\9no5
|
| 9:10:11
|-
| 41
| 0-8-21
| 1-14/11-10/9
| werckismic
| C,\9no5
|  
|  
|-
| 42
| 0-9-21
| 1-14/9-10/9
| otonal
| C/(\~5)
| 1-9/7-10/7
| 7:9:10
|-
| 43
| 0-12-21
| 1-10/7-10/9
| utonal
| C\2(\~5)
|  
| 1/(10:9:7)
|-
| 44
| 0-13-21
| 1-7/4-10/9
| werckismic
| C\2\m7no5
|
|
|-
| 45
| 0-20-21
| 1-20/11-10/9
| utonal
|  
|  
| 1/(20:18:11)
|-
| 46
| 0-2-23
| 1-3/2-5/3
| otonal
| C\m7no5
| 1-6/5-9/5
| 5:6:9
|-
| 47
| 0-3-23
| 1-11/6-5/3
| otonal
|
|
| 6:10:11
|-
| 48
| 0-11-23
| 1-7/6-5/3
| otonal
| C\m6no5
|  
| 6:7:10
|-
| 49
| 0-12-23
| 1-10/7-5/3
| utonal
| C/dim
| 1-7/6-7/5
| 1/(10:7:6)
|-
| 50
| 0-20-23
| 1-20/11-5/3
| utonal
|
|
| 1/(20:12:11)
|-
| 51
| 0-21-23
| 1-10/9-5/3
| utonal
| C/7no3
| 1-3/2-9/5
| 1/(9:6:5)
|-
| 52
| 0-2-25
| 1-3/2-5/4
| otonal
| C\
|
| 4:5:6
|-
| 53
| 0-4-25
| 1-9/8-5/4
| otonal
| C\,9no5
|
| 4:5:9
|-
| 54
| 0-5-25
| 1-11/8-5/4
| otonal
| C\(\b5)
|
| 8:10:11
|-
| 55
| 0-12-25
| 1-10/7-5/4
| utonal
| C\(\~5)
|
| 1/(10:8:7)
|-
| 56
| 0-13-25
| 1-7/4-5/4
| otonal
| C\7no5
|
| 4:5:6
|-
| 57
| 0-20-25
| 1-20/11-5/4
| utonal
| C\,\~7no5
|
| 1/(20:16:11)
|-
| 58
| 0-21-25
| 1-10/9-5/4
| utonal
| C/9no35
| 1-9/5-9/4
| 1/(9:5:4)
|-
| 59
| 0-23-25
| 1-5/3-5/4
| utonal
| C/m
| 1-6/5-3/2
| 1/(6:5:4)
|}


== Tetrads ==
{| class="wikitable center-1"
|-
! #
! Genspans
! Transversal
! Type
! Name
! Inversion
! As harmonics<br>or subharmonics
|-
| 1
| 0-1-2-3
| 1-11/9-3/2-11/6
| rastmic
| C~7
|
|
|-
| 2
| 0-1-2-4
| 1-11/9-3/2-9/8
| rastmic
| C~,9
|
|
|-
| 3
| 0-1-3-4
| 1-11/9-11/6-9/8
| rastmic
| C~9no5
|
|
|-
| 4
| 0-2-3-4
| 1-3/2-11/6-9/8
| rastmic
| C~9no3
|
|
|-
| 5
| 0-1-2-5
| 1-11/9-3/2-11/8
| rastmic
| C~,~11
|
|
|-
| 6
| 0-1-3-5
| 1-11/9-11/6-11/8
| utonal
| C2~6 ''or''<br>C4~9
| 1-9/8-3/2-18/11<br>1-4/3-3/2-24/11
| 1/(18:16:12:11)<br>1/(24:18:16:11)
|-
| 7
| 0-2-3-5
| 1-3/2-11/6-11/8
| ambitonal
| C~4~7
|
|
|-
| 8
| 0-1-4-5
| 1-11/9-9/8-11/8
| rastmic
|
|
|
|-
| 9
| 0-2-4-5
| 1-3/2-9/8-11/8
| otonal
| C4~7
| 1-4/3-3/2-11/6
| 6:8:9:11
|-
| 10
| 0-3-4-5
| 1-11/6-9/8-11/8
| rastmic
| C~11no35
|
|
|-
| 11
| 0-3-4-8
| 1-11/6-9/8-14/11
| parahemif
| C9(~7)no5
|
|
|-
| 12
| 0-3-5-8
| 1-11/6-11/8-14/11
| hemimin
| C~2~11
| 1-12/11-11/8-3/2
|
|-
| 13
| 0-4-5-8
| 1-9/8-11/8-14/11
| parahemif
| C~,~9
| 1-11/9-3/2-13/12
|
|-
| 14
| 0-1-4-9
| 1-11/9-9/8-14/9
| parahemif
| C~,9(^5)
|
|
|-
| 15
| 0-1-5-9
| 1-11/9-11/8-14/9
| pentacircle
| C,~6,9no5
| 1-14/11-18/11-9/4
|
|-
| 16
| 0-4-5-9
| 1-9/8-11/8-14/9
| pentacircle
| C~,7(\b5)
| 1-11/9-11/8-16/9
|
|-
| 17
| 0-4-8-9
| 1-9/8-14/11-14/9
| pentacircle
|
|
|
|-
| 18
| 0-5-8-9
| 1-11/8-14/11-14/9
| parahemif
|
|
|
|-
| 19
| 0-2-3-11
| 1-3/2-11/6-7/6
| otonal
| C\m~7
|
| 6:7:9:11
|-
| 20
| 0-3-8-11
| 1-11/6-14/11-7/6
| hemimin
|
|
|
|-
| 21
| 0-8-9-11
| 1-14/11-14/9-7/6
| utonal
| C/,~6
| 1-9/7-3/2-18/11
| 1/(18:14:12:11)
|-
| 22
| 0-1-3-12
| 1-11/9-11/6-10/7
| swetismic
| C\m~6
| 1-7/6-3/2-13/8
|
|-
| 23
| 0-1-4-12
| 1-11/9-9/8-10/7
| jove
|
|
|
|-
| 24
| 0-3-4-12
| 1-11/6-9/8-10/7
| jove
|
|
|
|-
| 25
| 0-3-8-12
| 1-11/6-14/11-10/7
| hemififths
|
|
|
|-
| 26
| 0-4-8-12
| 1-9/8-14/11-10/7
| pele
| C9no5
| 1-9/8-14/11-16/9
|
|-
| 27
| 0-1-9-12
| 1-11/9-14/9-10/7
| swetismic
|
|
|
|-
| 28
| 0-4-9-12
| 1-9/8-14/9-10/7
| hemififths
|
|
|
|-
| 29
| 0-8-9-12
| 1-14/11-14/9-10/7
| jove
|
|
|
|-
| 30
| 0-3-11-12
| 1-11/6-7/6-10/7
| swetismic
|
|
|
|-
| 31
| 0-8-11-12
| 1-14/11-7/6-10/7
| jove
|
|
|
|-
| 32
| 0-9-11-12
| 1-14/9-7/6-10/7
| swetismic
|
|
|
|-
| 33
| 0-1-2-13
| 1-11/9-3/2-7/4
| jove
| C~,\7
|
|
|-
| 34
| 0-1-4-13
| 1-11/9-9/8-7/4
| jove
|
|
|
|-
| 35
| 0-2-4-13
| 1-3/2-9/8-7/4
| otonal
| C\9no3
|
| 4:6:7:9
|-
| 36
| 0-1-5-13
| 1-11/9-11/8-7/4
| werckismic
|
|
|
|-
| 37
| 0-2-5-13
| 1-3/2-11/8-7/4
| otonal
| C~4,\7
|
| 8:11:12:14
|-
| 38
| 0-4-5-13
| 1-9/8-11/8-7/4
| otonal
| C~4\7,9 ''or'' C~,7(^5)
| 1-11/9-14/9-16/9
| 9:11:14:16
|-
| 39
| 0-4-8-13
| 1-9/8-14/11-7/4
| pentacircle
|
|
|
|-
| 40
| 0-5-8-13
| 1-11/8-14/11-7/4
| hemimin
|
|
|
|-
| 41
| 0-1-9-13
| 1-11/9-14/9-7/4
| werckismic
|
|
|
|-
| 42
| 0-4-9-13
| 1-9/8-14/9-7/4
| pentacircle
|
|
|
|-
| 43
| 0-5-9-13
| 1-11/8-14/9-7/4
| pentacircle
|
|
|
|-
| 44
| 0-8-9-13
| 1-14/11-14/9-7/4
| utonal
|
|
| 1/(14:11:9:8)
|-
| 45
| 0-2-11-13
| 1-3/2-7/6-7/4
| ambitonal
| C\m7
|
|
|-
| 46
| 0-8-11-13
| 1-14/11-7/6-7/4
| utonal
|
|
| 1/(14:12:11:8)
|-
| 47
| 0-9-11-13
| 1-14/9-7/6-7/4
| utonal
| C/,9
| 1-9/7-3/2-9/4
| 1/(9:7:6:4)
|-
| 48
| 0-1-12-13
| 1-11/9-10/7-7/4
| jove
|
|
|
|-
| 49
| 0-4-12-13
| 1-9/8-10/7-7/4
| werckismic
|
|
|
|-
| 50
| 0-8-12-13
| 1-14/11-10/7-7/4
| werckismic
|
|
|
|-
| 51
| 0-9-12-13
| 1-14/9-10/7-7/4
| jove
|
|
|
|-
| 52
| 0-11-12-13
| 1-7/6-10/7-7/4
| jove
| C~,/6
| 1-11/9-3/2-12/7
|
|-
| 53
| 0-8-9-20
| 1-14/11-14/9-20/11
| swetismic
|
|
|
|-
| 54
| 0-8-11-20
| 1-14/11-7/6-20/11
| swetismic
|
|
|
|-
| 55
| 0-9-11-20
| 1-14/9-7/6-20/11
| swetismic
|
|
|
|-
| 56
| 0-8-12-20
| 1-14/11-10/7-20/11
| werckismic
|
|
|
|-
| 57
| 0-9-12-20
| 1-14/9-10/7-20/11
| swetismic
|
|
|
|-
| 58
| 0-11-12-20
| 1-7/6-10/7-20/11
| swetismic
|
|
|
|-
| 59
| 0-1-9-21
| 1-11/9-14/9-10/9
| otonal
|
|
| 9:10:11:14
|-
| 60
| 0-8-9-21
| 1-14/11-14/9-10/9
| werckismic
|
|
|
|-
| 61
| 0-1-12-21
| 1-11/9-10/7-10/9
| swetismic
|
|
|
|-
| 62
| 0-8-12-21
| 1-14/11-10/7-10/9
| werckismic
|
|
|
|-
| 63
| 0-9-12-21
| 1-14/9-10/7-10/9
| swetismic
|
|
|
|-
| 64
| 0-1-13-21
| 1-11/9-7/4-10/9
| werckismic
|
|
|
|-
| 65
| 0-8-13-21
| 1-14/11-7/4-10/9
| werckismic
|
|
|
|-
| 66
| 0-9-13-21
| 1-14/9-7/4-10/9
| werckismic
|
|
|
|-
| 67
| 0-12-13-21
| 1-10/7-7/4-10/9
| werckismic
|
|
|
|-
| 68
| 0-8-20-21
| 1-14/11-20/11-10/9
| werckismic
|
|
|
|-
| 69
| 0-9-20-21
| 1-14/9-20/11-10/9
| swetismic
|
|
|
|-
| 70
| 0-12-20-21
| 1-10/7-20/11-10/9
| utonal
|
|
| 1/(20:18:14:11)
|-
| 71
| 0-2-3-23
| 1-3/2-11/6-5/3
| otonal
|
|
| 6:9:10:11
|-
| 72
| 0-2-11-23
| 1-3/2-7/6-5/3
| otonal
| C\m6
|
| 6:7:9:10
|-
| 73
| 0-3-11-23
| 1-11/6-7/6-5/3
| otonal
| C\m6~7no5
|
| 6:7:10:11
|-
| 74
| 0-3-12-23
| 1-11/6-10/7-5/3
| swetismic
|
|
|
|-
| 75
| 0-11-12-23
| 1-7/6-10/7-5/3
| swetismic
| C\m6(\~5)
|
|
|-
| 76
| 0-11-20-23
| 1-7/6-20/11-5/3
| swetismic
|
|
|
|-
| 77
| 0-12-20-23
| 1-10/7-20/11-5/3
| utonal
|
|
| 1/(20:14:12:11)
|-
| 78
| 0-12-21-23
| 1-10/7-10/9-5/3
| utonal
| C/7
| 1-9/7-3/2-9/5
| 1/(9:7:6:5)
|-
| 79
| 0-20-21-23
| 1-20/11-10/9-5/3
| utonal
| C/7~13no3
| 1-3/2-18/11-9/5
| 1/(18:12:11:10)
|-
| 80
| 0-2-4-25
| 1-3/2-9/8-5/4
| otonal
| C\,9
|
| 4:5:6:9
|-
| 81
| 0-2-5-25
| 1-3/2-11/8-5/4
| otonal
| C\,~11
|
| 8:10:11:12
|-
| 82
| 0-4-5-25
| 1-9/8-11/8-5/4
| otonal
| C\,9(\b5)
|
| 8:9:10:11
|-
| 83
| 0-4-12-25
| 1-9/8-10/7-5/4
| werckismic
| C,9(\~5)
|
|
|-
| 84
| 0-2-13-25
| 1-3/2-7/4-5/4
| otonal
| C\7
|
| 4:5:6:7
|-
| 85
| 0-4-13-25
| 1-9/8-7/4-5/4
| otonal
| C\9no5
|
| 4:5:7:9
|-
| 86
| 0-5-13-25
| 1-11/8-7/4-5/4
| otonal
| C\7~11no5
|
| 4:5:7:11
|-
| 87
| 0-12-13-25
| 1-10/7-7/4-5/4
| werckismic
| C\7(\~5)
|
|
|-
| 88
| 0-12-20-25
| 1-10/7-20/11-5/4
| utonal
| C,\7(b5)
| 1-14/11-7/5-7/4
| 1/(20:16:14:11)
|-
| 89
| 0-12-21-25
| 1-10/7-10/9-5/4
| utonal
| C/9no5
| 1-9/7-9/5-9/4
| 1/(10:9:8:7)
|-
| 90
| 0-13-21-25
| 1-7/4-10/9-5/4
| werckismic
| C\7\9no5
|
|
|-
| 91
| 0-20-21-25
| 1-20/11-10/9-5/4
| utonal
| C2~6^7no5
| 1-18/11-9/5-9/4
| 1/(20:18:16:11)
|-
| 92
| 0-2-23-25
| 1-3/2-5/3-5/4
| ambitonal
| C\6 <u>or</u> C/m7
| 1-6/5-3/2-9/5
|
|-
| 93
| 0-12-23-25
| 1-10/7-5/3-5/4
| utonal
| C/m6<br>C\m7(b5)
| 1-6/5-3/2-12/7<br>1-7/6-7/5-7/4
| 1/(12:10:8:7)<br>1/(7:6:5:4)
|-
| 94
| 0-20-23-25
| 1-20/11-5/3-5/4
| utonal
| C/m,~9
| 1-6/5-3/2-24/11
| 1/(24:20:18:11)
|-
| 95
| 0-21-23-25
| 1-10/9-5/3-5/4
| utonal
| C/9no3
| 1-3/2-9/5-9/4
| 1/(9:6:5:4)
|}


&lt;table class="wiki_table"&gt;
== Pentads ==
    &lt;tr&gt;
{| class="wikitable center-1"
        &lt;td&gt;Number&lt;br /&gt;
|-
&lt;/td&gt;
! #
        &lt;td&gt;Chord&lt;br /&gt;
! Genspans
&lt;/td&gt;
! Transversal
        &lt;td&gt;Transversal&lt;br /&gt;
! Type
&lt;/td&gt;
! Name
        &lt;td&gt;Type&lt;br /&gt;
! Inversion
&lt;/td&gt;
! As harmonics<br>or subharmonics
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 1
        &lt;td&gt;1&lt;br /&gt;
| 0-1-2-3-4
&lt;/td&gt;
| 1-11/9-3/2-11/6-9/8
        &lt;td&gt;0-1-2&lt;br /&gt;
| rastmic
&lt;/td&gt;
| C~9
        &lt;td&gt;1-11/9-3/2&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;rastmic&lt;br /&gt;
|-
&lt;/td&gt;
| 2
    &lt;/tr&gt;
| 0-1-2-3-5
    &lt;tr&gt;
| 1-11/9-3/2-11/6-11/8
        &lt;td&gt;2&lt;br /&gt;
| rastmic
&lt;/td&gt;
| C~11no9
        &lt;td&gt;0-1-3&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-11/9-11/6&lt;br /&gt;
|-
&lt;/td&gt;
| 3
        &lt;td&gt;utonal&lt;br /&gt;
| 0-1-2-4-5
&lt;/td&gt;
| 1-11/9-3/2-9/8-11/8
    &lt;/tr&gt;
| rastmic
    &lt;tr&gt;
| C~11no7
        &lt;td&gt;3&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-2-3&lt;br /&gt;
|-
&lt;/td&gt;
| 4
        &lt;td&gt;1-3/2-11/6&lt;br /&gt;
| 0-1-3-4-5
&lt;/td&gt;
| 1-11/9-11/6-9/8-11/8
        &lt;td&gt;otonal&lt;br /&gt;
| rastmic
&lt;/td&gt;
| C~11no5
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;4&lt;br /&gt;
|-
&lt;/td&gt;
| 5
        &lt;td&gt;0-1-4&lt;br /&gt;
| 0-2-3-4-5
&lt;/td&gt;
| 1-3/2-11/6-9/8-11/8
        &lt;td&gt;1-11/9-9/8&lt;br /&gt;
| rastmic
&lt;/td&gt;
| C~11no3
        &lt;td&gt;rastmic&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 6
        &lt;td&gt;5&lt;br /&gt;
| 0-3-4-5-8
&lt;/td&gt;
| 1-11/6-9/8-11/8-14/11
        &lt;td&gt;0-2-4&lt;br /&gt;
| parahemif
&lt;/td&gt;
|
        &lt;td&gt;1-3/2-9/8&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;ambitonal&lt;br /&gt;
|-
&lt;/td&gt;
| 7
    &lt;/tr&gt;
| 0-1-4-5-9
    &lt;tr&gt;
| 1-11/9-9/8-11/8-14/9
        &lt;td&gt;6&lt;br /&gt;
| parahemif
&lt;/td&gt;
|
        &lt;td&gt;0-3-4&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-11/6-9/8&lt;br /&gt;
|-
&lt;/td&gt;
| 8
        &lt;td&gt;rastmic&lt;br /&gt;
| 0-4-5-8-9
&lt;/td&gt;
| 1-9/8-11/8-14/11-14/9
    &lt;/tr&gt;
| parahemif
    &lt;tr&gt;
|
        &lt;td&gt;7&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-1-5&lt;br /&gt;
|-
&lt;/td&gt;
| 9
        &lt;td&gt;1-11/9-11/8&lt;br /&gt;
| 0-1-3-4-12
&lt;/td&gt;
| 1-11/9-11/6-9/8-10/7
        &lt;td&gt;utonal&lt;br /&gt;
| jove
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;8&lt;br /&gt;
|-
&lt;/td&gt;
| 10
        &lt;td&gt;0-2-5&lt;br /&gt;
| 0-3-4-8-12
&lt;/td&gt;
| 1-11/6-9/8-14/11-10/7
        &lt;td&gt;1-3/2-11/8&lt;br /&gt;
| hemififths
&lt;/td&gt;
|
        &lt;td&gt;otonal&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 11
        &lt;td&gt;9&lt;br /&gt;
| 0-1-4-9-12
&lt;/td&gt;
| 1-11/9-9/8-14/9-10/7
        &lt;td&gt;0-3-5&lt;br /&gt;
| hemififths
&lt;/td&gt;
|
        &lt;td&gt;1-11/6-11/8&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;utonal&lt;br /&gt;
|-
&lt;/td&gt;
| 12
    &lt;/tr&gt;
| 0-4-8-9-12
    &lt;tr&gt;
| 1-9/8-14/11-14/9-10/7
        &lt;td&gt;10&lt;br /&gt;
| hemififths
&lt;/td&gt;
|
        &lt;td&gt;0-4-5&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-9/8-11/8&lt;br /&gt;
|-
&lt;/td&gt;
| 13
        &lt;td&gt;otonal&lt;br /&gt;
| 0-3-8-11-12
&lt;/td&gt;
| 1-11/6-14/11-7/6-10/7
    &lt;/tr&gt;
| hemififths
    &lt;tr&gt;
|
        &lt;td&gt;11&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-3-8&lt;br /&gt;
|-
&lt;/td&gt;
| 14
        &lt;td&gt;1-11/6-14/11&lt;br /&gt;
| 0-8-9-11-12
&lt;/td&gt;
| 1-14/11-14/9-7/6-10/7
        &lt;td&gt;hemimin&lt;br /&gt;
| jove
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;12&lt;br /&gt;
|-
&lt;/td&gt;
| 15
        &lt;td&gt;0-4-8&lt;br /&gt;
| 0-1-2-4-13
&lt;/td&gt;
| 1-11/9-3/2-9/8-7/4
        &lt;td&gt;1-9/8-14/11&lt;br /&gt;
| jove
&lt;/td&gt;
| C~9(\m7)
        &lt;td&gt;pentacircle&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 16
        &lt;td&gt;13&lt;br /&gt;
| 0-1-2-5-13
&lt;/td&gt;
| 1-11/9-3/2-11/8-7/4
        &lt;td&gt;0-5-8&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;1-11/8-14/11&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;hemimin&lt;br /&gt;
|-
&lt;/td&gt;
| 17
    &lt;/tr&gt;
| 0-1-4-5-13
    &lt;tr&gt;
| 1-11/9-9/8-11/8-7/4
        &lt;td&gt;14&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;0-1-9&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-11/9-14/9&lt;br /&gt;
|-
&lt;/td&gt;
| 18
        &lt;td&gt;otonal&lt;br /&gt;
| 0-2-4-5-13
&lt;/td&gt;
| 1-3/2-9/8-11/8-7/4
    &lt;/tr&gt;
| otonal
    &lt;tr&gt;
| C\9~11no3
        &lt;td&gt;15&lt;br /&gt;
|
&lt;/td&gt;
| 4:6:7:9:11
        &lt;td&gt;0-4-9&lt;br /&gt;
|-
&lt;/td&gt;
| 19
        &lt;td&gt;1-9/8-14/9&lt;br /&gt;
| 0-4-5-8-13
&lt;/td&gt;
| 1-9/8-11/8-14/11-7/4
        &lt;td&gt;pentacircle&lt;br /&gt;
| parahemif
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;16&lt;br /&gt;
|-
&lt;/td&gt;
| 20
        &lt;td&gt;0-5-9&lt;br /&gt;
| 0-1-4-9-13
&lt;/td&gt;
| 1-11/9-9/8-14/9-7/4
        &lt;td&gt;1-11/8-14/9&lt;br /&gt;
| hemififths
&lt;/td&gt;
|
        &lt;td&gt;pentacircle&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 21
        &lt;td&gt;17&lt;br /&gt;
| 0-1-5-9-13
&lt;/td&gt;
| 1-11/9-11/8-14/9-7/4
        &lt;td&gt;0-8-9&lt;br /&gt;
| pele
&lt;/td&gt;
|
        &lt;td&gt;1-14/11-14/9&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;utonal&lt;br /&gt;
|-
&lt;/td&gt;
| 22
    &lt;/tr&gt;
| 0-4-5-9-13
    &lt;tr&gt;
| 1-9/8-11/8-14/9-7/4
        &lt;td&gt;18&lt;br /&gt;
| pentacircle
&lt;/td&gt;
|
        &lt;td&gt;0-2-11&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-3/2-7/6&lt;br /&gt;
|-
&lt;/td&gt;
| 23
        &lt;td&gt;otonal&lt;br /&gt;
| 0-4-8-9-13
&lt;/td&gt;
| 1-9/8-14/11-14/9-7/4
    &lt;/tr&gt;
| pentacircle
    &lt;tr&gt;
|
        &lt;td&gt;19&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-3-11&lt;br /&gt;
|-
&lt;/td&gt;
| 24
        &lt;td&gt;1-11/6-7/6&lt;br /&gt;
| 0-5-8-9-13
&lt;/td&gt;
| 1-11/8-14/11-14/9-7/4
        &lt;td&gt;otonal&lt;br /&gt;
| parahemif
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;20&lt;br /&gt;
|-
&lt;/td&gt;
| 25
        &lt;td&gt;0-8-11&lt;br /&gt;
| 0-8-9-11-13
&lt;/td&gt;
| 1-14/11-14/9-7/6-7/4
        &lt;td&gt;1-14/11-7/6&lt;br /&gt;
| utonal
&lt;/td&gt;
| C/,~6,9
        &lt;td&gt;utonal&lt;br /&gt;
| 1-9/7-3/2-18/11-9/4
&lt;/td&gt;
| 1/(18:14:12:11:8)
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 26
        &lt;td&gt;21&lt;br /&gt;
| 0-1-4-12-13
&lt;/td&gt;
| 1-11/9-9/8-10/7-7/4
        &lt;td&gt;0-9-11&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;1-14/9-7/6&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;utonal&lt;br /&gt;
|-
&lt;/td&gt;
| 27
    &lt;/tr&gt;
| 0-4-8-12-13
    &lt;tr&gt;
| 1-9/8-14/11-10/7-7/4
        &lt;td&gt;22&lt;br /&gt;
| pele
&lt;/td&gt;
|
        &lt;td&gt;0-1-12&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-11/9-10/7&lt;br /&gt;
|-
&lt;/td&gt;
| 28
        &lt;td&gt;swetismic&lt;br /&gt;
| 0-1-9-12-13
&lt;/td&gt;
| 1-11/9-14/9-10/7-7/4
    &lt;/tr&gt;
| jove
    &lt;tr&gt;
|
        &lt;td&gt;23&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-3-12&lt;br /&gt;
|-
&lt;/td&gt;
| 29
        &lt;td&gt;1-11/6-10/7&lt;br /&gt;
| 0-4-9-12-13
&lt;/td&gt;
| 1-9/8-14/9-10/7-7/4
        &lt;td&gt;swetismic&lt;br /&gt;
| hemififths
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;24&lt;br /&gt;
|-
&lt;/td&gt;
| 30
        &lt;td&gt;0-4-12&lt;br /&gt;
| 0-8-9-12-13
&lt;/td&gt;
| 1-14/11-14/9-10/7-7/4
        &lt;td&gt;1-9/8-10/7&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;werckismic&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 31
        &lt;td&gt;25&lt;br /&gt;
| 0-8-11-12-13
&lt;/td&gt;
| 1-14/11-7/6-10/7-7/4
        &lt;td&gt;0-8-12&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;1-14/11-10/7&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;werckismic&lt;br /&gt;
|-
&lt;/td&gt;
| 32
    &lt;/tr&gt;
| 0-9-11-12-13
    &lt;tr&gt;
| 1-14/9-7/6-10/7-7/4
        &lt;td&gt;26&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;0-9-12&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-14/9-10/7&lt;br /&gt;
|-
&lt;/td&gt;
| 33
        &lt;td&gt;swetismic&lt;br /&gt;
| 0-8-9-11-20
&lt;/td&gt;
| 1-14/11-14/9-7/6-20/11
    &lt;/tr&gt;
| swetismic
    &lt;tr&gt;
|
        &lt;td&gt;27&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-11-12&lt;br /&gt;
|-
&lt;/td&gt;
| 34
        &lt;td&gt;1-7/6-10/7&lt;br /&gt;
| 0-8-9-12-20
&lt;/td&gt;
| 1-14/11-14/9-10/7-20/11
        &lt;td&gt;swetismic&lt;br /&gt;
| jove
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;28&lt;br /&gt;
|-
&lt;/td&gt;
| 35
        &lt;td&gt;0-1-13&lt;br /&gt;
| 0-8-11-12-20
&lt;/td&gt;
| 1-14/11-7/6-10/7-20/11
        &lt;td&gt;1-11/9-7/4&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;werckismic&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 36
        &lt;td&gt;29&lt;br /&gt;
| 0-9-11-12-20
&lt;/td&gt;
| 1-14/9-7/6-10/7-20/11
        &lt;td&gt;0-2-13&lt;br /&gt;
| swetismic
&lt;/td&gt;
|
        &lt;td&gt;1-3/2-7/4&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;otonal&lt;br /&gt;
|-
&lt;/td&gt;
| 37
    &lt;/tr&gt;
| 0-1-9-12-21
    &lt;tr&gt;
| 1-11/9-14/9-10/7-10/9
        &lt;td&gt;30&lt;br /&gt;
| swetismic
&lt;/td&gt;
|
        &lt;td&gt;0-4-13&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-9/8-7/4&lt;br /&gt;
|-
&lt;/td&gt;
| 38
        &lt;td&gt;otonal&lt;br /&gt;
| 0-8-9-12-21
&lt;/td&gt;
| 1-14/11-14/9-10/7-10/9
    &lt;/tr&gt;
| jove
    &lt;tr&gt;
|
        &lt;td&gt;31&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-5-13&lt;br /&gt;
|-
&lt;/td&gt;
| 39
        &lt;td&gt;1-11/8-7/4&lt;br /&gt;
| 0-1-9-13-21
&lt;/td&gt;
| 1-11/9-14/9-7/4-10/9
        &lt;td&gt;otonal&lt;br /&gt;
| werckismic
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;32&lt;br /&gt;
|-
&lt;/td&gt;
| 40
        &lt;td&gt;0-8-13&lt;br /&gt;
| 0-8-9-13-21
&lt;/td&gt;
| 1-14/11-14/9-7/4-10/9
        &lt;td&gt;1-14/11-7/4&lt;br /&gt;
| werckismic
&lt;/td&gt;
|
        &lt;td&gt;utonal&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 41
        &lt;td&gt;33&lt;br /&gt;
| 0-1-12-13-21
&lt;/td&gt;
| 1-11/9-10/7-7/4-10/9
        &lt;td&gt;0-9-13&lt;br /&gt;
| jove
&lt;/td&gt;
|
        &lt;td&gt;1-14/9-7/4&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;utonal&lt;br /&gt;
|-
&lt;/td&gt;
| 42
    &lt;/tr&gt;
| 0-8-12-13-21
    &lt;tr&gt;
| 1-14/11-10/7-7/4-10/9
        &lt;td&gt;34&lt;br /&gt;
| werckismic
&lt;/td&gt;
|
        &lt;td&gt;0-11-13&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;1-7/6-7/4&lt;br /&gt;
|-
&lt;/td&gt;
| 43
        &lt;td&gt;utonal&lt;br /&gt;
| 0-9-12-13-21
&lt;/td&gt;
| 1-14/9-10/7-7/4-10/9
    &lt;/tr&gt;
| jove
    &lt;tr&gt;
|
        &lt;td&gt;35&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-12-13&lt;br /&gt;
|-
&lt;/td&gt;
| 44
        &lt;td&gt;1-10/7-7/4&lt;br /&gt;
| 0-8-9-20-21
&lt;/td&gt;
| 1-14/11-14/9-20/11-10/9
        &lt;td&gt;werckismic&lt;br /&gt;
| jove
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;36&lt;br /&gt;
|-
&lt;/td&gt;
| 45
        &lt;td&gt;0-8-20&lt;br /&gt;
| 0-8-12-20-21
&lt;/td&gt;
| 1-14/11-10/7-20/11-10/9
        &lt;td&gt;1-14/11-20/11&lt;br /&gt;
| werckismic
&lt;/td&gt;
|
        &lt;td&gt;otonal&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 46
        &lt;td&gt;37&lt;br /&gt;
| 0-9-12-20-21
&lt;/td&gt;
| 1-14/9-10/7-20/11-10/9
        &lt;td&gt;0-9-20&lt;br /&gt;
| swetismic
&lt;/td&gt;
|
        &lt;td&gt;1-14/9-20/11&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;swetismic&lt;br /&gt;
|-
&lt;/td&gt;
| 47
    &lt;/tr&gt;
| 0-2-3-11-23
    &lt;tr&gt;
| 1-3/2-11/6-7/6-5/3
        &lt;td&gt;38&lt;br /&gt;
| otonal
&lt;/td&gt;
| C\m6~7
        &lt;td&gt;0-11-20&lt;br /&gt;
|
&lt;/td&gt;
| 6:7:9:10:11
        &lt;td&gt;1-7/6-20/11&lt;br /&gt;
|-
&lt;/td&gt;
| 48
        &lt;td&gt;swetismic&lt;br /&gt;
| 0-3-11-12-23
&lt;/td&gt;
| 1-11/6-7/6-10/7-5/3
    &lt;/tr&gt;
| swetismic
    &lt;tr&gt;
|
        &lt;td&gt;39&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;0-12-20&lt;br /&gt;
|-
&lt;/td&gt;
| 49
        &lt;td&gt;1-10/7-20/11&lt;br /&gt;
| 0-11-12-20-23
&lt;/td&gt;
| 1-7/6-10/7-20/11-5/3
        &lt;td&gt;utonal&lt;br /&gt;
| swetismic
&lt;/td&gt;
|
    &lt;/tr&gt;
|
    &lt;tr&gt;
|
        &lt;td&gt;40&lt;br /&gt;
|-
&lt;/td&gt;
| 50
        &lt;td&gt;0-1-21&lt;br /&gt;
| 0-12-20-21-23
&lt;/td&gt;
| 1-10/7-20/11-10/9-5/3
        &lt;td&gt;1-11/9-10/9&lt;br /&gt;
| utonal
&lt;/td&gt;
| C/7~6
        &lt;td&gt;otonal&lt;br /&gt;
| 1-9/7-3/2-18/11-9/5
&lt;/td&gt;
| 1/(18:14:12:11:10)
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 51
        &lt;td&gt;41&lt;br /&gt;
| 0-2-4-5-25
&lt;/td&gt;
| 1-3/2-9/8-11/8-5/4
        &lt;td&gt;0-8-21&lt;br /&gt;
| otonal
&lt;/td&gt;
| C\,9~11
        &lt;td&gt;1-14/11-10/9&lt;br /&gt;
|
&lt;/td&gt;
| 4:5:6:9:11
        &lt;td&gt;werckismic&lt;br /&gt;
|-
&lt;/td&gt;
| 52
    &lt;/tr&gt;
| 0-2-4-13-25
    &lt;tr&gt;
| 1-3/2-9/8-7/4-5/4
        &lt;td&gt;42&lt;br /&gt;
| otonal
&lt;/td&gt;
| C\9
        &lt;td&gt;0-9-21&lt;br /&gt;
|
&lt;/td&gt;
| 4:5:6:7:9
        &lt;td&gt;1-14/9-10/9&lt;br /&gt;
|-
&lt;/td&gt;
| 53
        &lt;td&gt;otonal&lt;br /&gt;
| 0-2-5-13-25
&lt;/td&gt;
| 1-3/2-11/8-7/4-5/4
    &lt;/tr&gt;
| otonal
    &lt;tr&gt;
| C\7~11
        &lt;td&gt;43&lt;br /&gt;
|
&lt;/td&gt;
| 4:5:6:7:11
        &lt;td&gt;0-12-21&lt;br /&gt;
|-
&lt;/td&gt;
| 54
        &lt;td&gt;1-10/7-10/9&lt;br /&gt;
| 0-4-5-13-25
&lt;/td&gt;
| 1-9/8-11/8-7/4-5/4
        &lt;td&gt;utonal&lt;br /&gt;
| otonal
&lt;/td&gt;
| C\9~11no5
    &lt;/tr&gt;
|
    &lt;tr&gt;
| 4:5:7:9:11
        &lt;td&gt;44&lt;br /&gt;
|-
&lt;/td&gt;
| 55
        &lt;td&gt;0-13-21&lt;br /&gt;
| 0-4-12-13-25
&lt;/td&gt;
| 1-9/8-10/7-7/4-5/4
        &lt;td&gt;1-7/4-10/9&lt;br /&gt;
| werckismic
&lt;/td&gt;
| C\9(\~5)
        &lt;td&gt;werckismic&lt;br /&gt;
|
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 56
        &lt;td&gt;45&lt;br /&gt;
| 0-12-13-21-25
&lt;/td&gt;
| 1-10/7-7/4-10/9-5/4
        &lt;td&gt;0-20-21&lt;br /&gt;
| werckismic
&lt;/td&gt;
|
        &lt;td&gt;1-20/11-10/9&lt;br /&gt;
|
&lt;/td&gt;
|
        &lt;td&gt;utonal&lt;br /&gt;
|-
&lt;/td&gt;
| 57
    &lt;/tr&gt;
| 0-12-20-21-25
    &lt;tr&gt;
| 1-10/7-20/11-10/9-5/4
        &lt;td&gt;46&lt;br /&gt;
| utonal
&lt;/td&gt;
| C/9~6no5
        &lt;td&gt;0-2-23&lt;br /&gt;
| 1-9/7-18/11-9/5-9/4
&lt;/td&gt;
| 1/(18:14:11:10:8)
        &lt;td&gt;1-3/2-5/3&lt;br /&gt;
|-
&lt;/td&gt;
| 58
        &lt;td&gt;otonal&lt;br /&gt;
| 0-12-20-23-25
&lt;/td&gt;
| 1-10/7-20/11-5/3-5/4
    &lt;/tr&gt;
| utonal
    &lt;tr&gt;
| C/m6~9
        &lt;td&gt;47&lt;br /&gt;
| 1-6/5-3/2-12/7-24/11
&lt;/td&gt;
| 1/(24:20:16:14:11)
        &lt;td&gt;0-3-23&lt;br /&gt;
|-
&lt;/td&gt;
| 59
        &lt;td&gt;1-11/6-5/3&lt;br /&gt;
| 0-12-21-23-25
&lt;/td&gt;
| 1-10/7-10/9-5/3-5/4
        &lt;td&gt;otonal&lt;br /&gt;
| utonal
&lt;/td&gt;
| C/9
    &lt;/tr&gt;
| 1-9/7-3/2-9/5-9/4
    &lt;tr&gt;
| 1/(9:7:6:5:4)
        &lt;td&gt;48&lt;br /&gt;
|-
&lt;/td&gt;
| 60
        &lt;td&gt;0-11-23&lt;br /&gt;
| 0-20-21-23-25
&lt;/td&gt;
| 1-20/11-10/9-5/3-5/4
        &lt;td&gt;1-7/6-5/3&lt;br /&gt;
| utonal
&lt;/td&gt;
| C/9~6no3
        &lt;td&gt;otonal&lt;br /&gt;
| 1-3/2-18/11-9/5-9/4
&lt;/td&gt;
| 1/(18:12:11:10:8)
    &lt;/tr&gt;
|}
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
== Hexads ==
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Tetrads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Tetrads&lt;/h1&gt;
{| class="wikitable center-1"
|-
! #
! Genspans
! Transversal
! Type
! Name
! Inversion
! As harmonics<br>or subharmonics
|-
| 1
| 0-1-2-3-4-5
| 1-11/9-3/2-11/6-9/8-11/8
| rastmic
| C~11
|
|
|-
| 2
| 0-1-2-4-5-13
| 1-11/9-3/2-9/8-11/8-7/4
| jove
| C~11(\m7)
|
|
|-
| 3
| 0-1-4-5-9-13
| 1-11/9-9/8-11/8-14/9-7/4
| hemififths
|
|
|
|-
| 4
| 0-4-5-8-9-13
| 1-9/8-11/8-14/11-14/9-7/4
| hemififths
|
|
|
|-
| 5
| 0-1-4-9-12-13
| 1-11/9-9/8-14/9-10/7-7/4
| hemififths
|
|
|
|-
| 6
| 0-4-8-9-12-13
| 1-9/8-14/11-14/9-10/7-7/4
| hemififths
|
|
|
|-
| 7
| 0-8-9-11-12-13
| 1-14/11-14/9-7/6-10/7-7/4
| jove
|
|
|
|-
| 8
| 0-8-9-11-12-20
| 1-14/11-14/9-7/6-10/7-20/11
| jove
|
|
|
|-
| 9
| 0-1-9-12-13-21
| 1-11/9-14/9-10/7-7/4-10/9
| jove
|
|
|
|-
| 10
| 0-8-9-12-13-21
| 1-14/11-14/9-10/7-7/4-10/9
| jove
|
|
|
|-
| 11
| 0-8-9-12-20-21
| 1-14/11-14/9-10/7-20/11-10/9
| jove
|
|
|
|-
| 12
| 0-2-4-5-13-25
| 1-3/2-9/8-11/8-7/4-5/4
| otonal
| C\9~11
|
| 4:5:6:7:9:11
|-
| 13
| 0-12-20-21-23-25
| 1-10/7-20/11-10/9-5/3-5/4
| utonal
| C/9~6
| 1-9/7-3/2-18/11-9/5-9/4
| 1/(18:14:12:11:10:8)
|}


 
[[Category:Lists of chords]]
&lt;table class="wiki_table"&gt;
[[Category:Hemififths]]
    &lt;tr&gt;
[[Category:Triads]]
        &lt;td&gt;Number&lt;br /&gt;
[[Category:Tetrads]]
&lt;/td&gt;
[[Category:Pentads]]
        &lt;td&gt;Chord&lt;br /&gt;
[[Category:Hexads]]
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pele&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;66&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;73&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;74&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;76&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;81&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;82&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;83&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;84&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;85&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;86&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;87&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;88&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;89&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;90&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;91&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;92&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;93&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;94&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;95&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Pentads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Pentads&lt;/h1&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-5-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-11/8-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/6-9/8-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-8-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-9/8-14/11-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-8-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-14/11-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-10/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pele&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pentacircle&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-5-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;pele&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/6-7/6-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-11-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/6-7/6-10/7-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-20-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-10/7-20/11-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-12-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-10/7-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-7/4-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;werckismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-20-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Hexads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Hexads&lt;/h1&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-4-5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-11/6-9/8-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;rastmic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-5-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-3/2-9/8-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-5-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-11/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-5-8-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-11/8-14/11-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;nofives&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-9/8-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-9-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/11-14/9-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemififths&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-10/7-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-11-12-20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-7/6-10/7-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/9-14/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-13-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-7/4-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-12-20-21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-14/9-10/7-20/11-10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jove&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-5-13-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-11/8-7/4-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-20-21-23-25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/7-20/11-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 20:52, 29 July 2025

Below are listed the 11-odd-limit dyadic chords of 11-limit hemififths temperament. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove. Those requiring both 441/440 and 896/891 are labeled pele. Those requiring any two of 243/242, 896/891 or 1344/1331 are labeled parahemif. If the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled hemififths.

A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has mos scales of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.

Chords are named with ups and downs, using pergen #4 (P8, P5/2) in the notation guide for rank-2 pergens. One up is 7 generators, which is a half-sharp. The tilde ~ means mid, half-way between major and minor. ~4 = ^4 = vA4 and ~5 = v5 = ^d5. The comma (the actual punctuation mark) is pronounced "add", thus C~,7 is "C mid add 7". To facilitate chord naming, lifts and drops are also used. One lift is -17 generators, a half-diminished second. Enharmonic equivalences: vvA1 and v\m2. Cents: ^1 = 50¢ + 3.5c and /1 = 50¢ - 8.5c, where c equals the amount in cents the tempered fifth exceeds 700¢. /1 = ~81/80 = ~64/63 and ^1 = ~33/32. To convert to 41edo, ^1 = 2\41 and /1 = 1\41.

The As harmonics or subharmonics column describes otonal chords as harmonics and utonal chords as subharmonics.

Hemififth's genchain
Genspan 0 1 2 3 4 5 6 7 8 9 10 11 12 13 20 21 23 25
Cents (41edo) 0 351 702 1054 205 556 907 59 410 761 1112 263 615 966 1024 176 878 380
Ratio 1/1 11/9
16/13
3/2 11/6
24/13
9/8 11/8
18/13
27/16
22/13
28/27
33/32
14/11 14/9 40/21
21/11
7/6 10/7 7/4 20/11 10/9 5/3 5/4
Interval P1 ~3 P5 ~7 M2 ~4
\b5
M6 ^1
\m2
M3 ^5
\m6
M7 ^M2
\m3
A4
\~5
^M6
\m7
A6
\~7
^A1
\M2
^A5
\M6
^A2
\M3
Todo: complete table

Triads

# Genspans Transversal Type Name Inversion As harmonics
or subharmonics
1 0-1-2 1-11/9-3/2 rastmic C~
2 0-1-3 1-11/9-11/6 utonal C~7no5 1/(11:9:6)
3 0-2-3 1-3/2-11/6 otonal C~7no3 6:9:11
4 0-1-4 1-11/9-9/8 rastmic C~,9no5
5 0-2-4 1-3/2-9/8 ambitonal C2 or C4 1-4/3-3/2
6 0-3-4 1-11/6-9/8 rastmic C~9no35
7 0-1-5 1-11/9-11/8 utonal C~(\b5) 1/(11:9:8)
8 0-2-5 1-3/2-11/8 otonal C~7sus4no5 1-4/3-11/6 6:8:11
9 0-3-5 1-11/6-11/8 utonal C~2 1-12/11-3/2 1/(12:11:8)
10 0-4-5 1-9/8-11/8 otonal C~,7no5 1-11/9-16/9 9:11:16
11 0-3-8 1-11/6-14/11 hemimin C,~7no5
12 0-4-8 1-9/8-14/11 pentacircle C,9no5
13 0-5-8 1-11/8-14/11 hemimin C(\b5)
14 0-1-9 1-11/9-14/9 otonal C~(^5) 9:11:14
15 0-4-9 1-9/8-14/9 pentacircle C7~4no5 1-11/8-16/9
16 0-5-9 1-11/8-14/9 pentacircle C2(~5) or
C/,7no5
1-9/8-13/9
1-9/7-16/9
17 0-8-9 1-14/11-14/9 utonal C(^5) 1/(14:11:9)
18 0-2-11 1-3/2-7/6 otonal C\m 6:7:9
19 0-3-11 1-11/6-7/6 otonal C\m~7no5 6:7:11
20 0-8-11 1-14/11-7/6 utonal C~2/6 1-12/11-12/7 1/(12:11:7)
21 0-9-11 1-14/9-7/6 utonal C/ 1-9/7-3/2 1/(9:7:6)
22 0-1-12 1-11/9-10/7 swetismic C~(\~5)
23 0-3-12 1-11/6-10/7 swetismic C/(b5) 1-9/7-7/5
24 0-4-12 1-9/8-10/7 werckismic C2(\~5)
25 0-8-12 1-14/11-10/7 werckismic C(\~5)
26 0-9-12 1-14/9-10/7 swetismic C~2(b5) 1-12/11-7/5
27 0-11-12 1-7/6-10/7 swetismic C\m(\~5)
28 0-1-13 1-11/9-7/4 werckismic C~,\7no5
29 0-2-13 1-3/2-7/4 otonal C\7no3 4:6:7
30 0-4-13 1-9/8-7/4 otonal C\9no35 4:7:9
31 0-5-13 1-11/8-7/4 otonal C(~5) 1-14/11-16/11 8:11:14
32 0-8-13 1-14/11-7/4 utonal C,\7 1/(14:11:8)
33 0-9-13 1-14/9-7/4 utonal C/,2no5 1-9/8-9/7 1/(9:8:7)
34 0-11-13 1-7/6-7/4 utonal C\m7no5 1/(7:6:4)
35 0-12-13 1-10/7-7/4 werckismic C~(b5) 1-11/9-7/5
36 0-8-20 1-14/11-20/11 otonal C,\~7no5 11:14:20
37 0-9-20 1-14/9-20/11 swetismic
38 0-11-20 1-7/6-20/11 swetismic C\m\~7no5
39 0-12-20 1-10/7-20/11 utonal C(b5) 1/(20:14:11)
40 0-1-21 1-11/9-10/9 otonal C~,\9no5 9:10:11
41 0-8-21 1-14/11-10/9 werckismic C,\9no5
42 0-9-21 1-14/9-10/9 otonal C/(\~5) 1-9/7-10/7 7:9:10
43 0-12-21 1-10/7-10/9 utonal C\2(\~5) 1/(10:9:7)
44 0-13-21 1-7/4-10/9 werckismic C\2\m7no5
45 0-20-21 1-20/11-10/9 utonal 1/(20:18:11)
46 0-2-23 1-3/2-5/3 otonal C\m7no5 1-6/5-9/5 5:6:9
47 0-3-23 1-11/6-5/3 otonal 6:10:11
48 0-11-23 1-7/6-5/3 otonal C\m6no5 6:7:10
49 0-12-23 1-10/7-5/3 utonal C/dim 1-7/6-7/5 1/(10:7:6)
50 0-20-23 1-20/11-5/3 utonal 1/(20:12:11)
51 0-21-23 1-10/9-5/3 utonal C/7no3 1-3/2-9/5 1/(9:6:5)
52 0-2-25 1-3/2-5/4 otonal C\ 4:5:6
53 0-4-25 1-9/8-5/4 otonal C\,9no5 4:5:9
54 0-5-25 1-11/8-5/4 otonal C\(\b5) 8:10:11
55 0-12-25 1-10/7-5/4 utonal C\(\~5) 1/(10:8:7)
56 0-13-25 1-7/4-5/4 otonal C\7no5 4:5:6
57 0-20-25 1-20/11-5/4 utonal C\,\~7no5 1/(20:16:11)
58 0-21-25 1-10/9-5/4 utonal C/9no35 1-9/5-9/4 1/(9:5:4)
59 0-23-25 1-5/3-5/4 utonal C/m 1-6/5-3/2 1/(6:5:4)

Tetrads

# Genspans Transversal Type Name Inversion As harmonics
or subharmonics
1 0-1-2-3 1-11/9-3/2-11/6 rastmic C~7
2 0-1-2-4 1-11/9-3/2-9/8 rastmic C~,9
3 0-1-3-4 1-11/9-11/6-9/8 rastmic C~9no5
4 0-2-3-4 1-3/2-11/6-9/8 rastmic C~9no3
5 0-1-2-5 1-11/9-3/2-11/8 rastmic C~,~11
6 0-1-3-5 1-11/9-11/6-11/8 utonal C2~6 or
C4~9
1-9/8-3/2-18/11
1-4/3-3/2-24/11
1/(18:16:12:11)
1/(24:18:16:11)
7 0-2-3-5 1-3/2-11/6-11/8 ambitonal C~4~7
8 0-1-4-5 1-11/9-9/8-11/8 rastmic
9 0-2-4-5 1-3/2-9/8-11/8 otonal C4~7 1-4/3-3/2-11/6 6:8:9:11
10 0-3-4-5 1-11/6-9/8-11/8 rastmic C~11no35
11 0-3-4-8 1-11/6-9/8-14/11 parahemif C9(~7)no5
12 0-3-5-8 1-11/6-11/8-14/11 hemimin C~2~11 1-12/11-11/8-3/2
13 0-4-5-8 1-9/8-11/8-14/11 parahemif C~,~9 1-11/9-3/2-13/12
14 0-1-4-9 1-11/9-9/8-14/9 parahemif C~,9(^5)
15 0-1-5-9 1-11/9-11/8-14/9 pentacircle C,~6,9no5 1-14/11-18/11-9/4
16 0-4-5-9 1-9/8-11/8-14/9 pentacircle C~,7(\b5) 1-11/9-11/8-16/9
17 0-4-8-9 1-9/8-14/11-14/9 pentacircle
18 0-5-8-9 1-11/8-14/11-14/9 parahemif
19 0-2-3-11 1-3/2-11/6-7/6 otonal C\m~7 6:7:9:11
20 0-3-8-11 1-11/6-14/11-7/6 hemimin
21 0-8-9-11 1-14/11-14/9-7/6 utonal C/,~6 1-9/7-3/2-18/11 1/(18:14:12:11)
22 0-1-3-12 1-11/9-11/6-10/7 swetismic C\m~6 1-7/6-3/2-13/8
23 0-1-4-12 1-11/9-9/8-10/7 jove
24 0-3-4-12 1-11/6-9/8-10/7 jove
25 0-3-8-12 1-11/6-14/11-10/7 hemififths
26 0-4-8-12 1-9/8-14/11-10/7 pele C9no5 1-9/8-14/11-16/9
27 0-1-9-12 1-11/9-14/9-10/7 swetismic
28 0-4-9-12 1-9/8-14/9-10/7 hemififths
29 0-8-9-12 1-14/11-14/9-10/7 jove
30 0-3-11-12 1-11/6-7/6-10/7 swetismic
31 0-8-11-12 1-14/11-7/6-10/7 jove
32 0-9-11-12 1-14/9-7/6-10/7 swetismic
33 0-1-2-13 1-11/9-3/2-7/4 jove C~,\7
34 0-1-4-13 1-11/9-9/8-7/4 jove
35 0-2-4-13 1-3/2-9/8-7/4 otonal C\9no3 4:6:7:9
36 0-1-5-13 1-11/9-11/8-7/4 werckismic
37 0-2-5-13 1-3/2-11/8-7/4 otonal C~4,\7 8:11:12:14
38 0-4-5-13 1-9/8-11/8-7/4 otonal C~4\7,9 or C~,7(^5) 1-11/9-14/9-16/9 9:11:14:16
39 0-4-8-13 1-9/8-14/11-7/4 pentacircle
40 0-5-8-13 1-11/8-14/11-7/4 hemimin
41 0-1-9-13 1-11/9-14/9-7/4 werckismic
42 0-4-9-13 1-9/8-14/9-7/4 pentacircle
43 0-5-9-13 1-11/8-14/9-7/4 pentacircle
44 0-8-9-13 1-14/11-14/9-7/4 utonal 1/(14:11:9:8)
45 0-2-11-13 1-3/2-7/6-7/4 ambitonal C\m7
46 0-8-11-13 1-14/11-7/6-7/4 utonal 1/(14:12:11:8)
47 0-9-11-13 1-14/9-7/6-7/4 utonal C/,9 1-9/7-3/2-9/4 1/(9:7:6:4)
48 0-1-12-13 1-11/9-10/7-7/4 jove
49 0-4-12-13 1-9/8-10/7-7/4 werckismic
50 0-8-12-13 1-14/11-10/7-7/4 werckismic
51 0-9-12-13 1-14/9-10/7-7/4 jove
52 0-11-12-13 1-7/6-10/7-7/4 jove C~,/6 1-11/9-3/2-12/7
53 0-8-9-20 1-14/11-14/9-20/11 swetismic
54 0-8-11-20 1-14/11-7/6-20/11 swetismic
55 0-9-11-20 1-14/9-7/6-20/11 swetismic
56 0-8-12-20 1-14/11-10/7-20/11 werckismic
57 0-9-12-20 1-14/9-10/7-20/11 swetismic
58 0-11-12-20 1-7/6-10/7-20/11 swetismic
59 0-1-9-21 1-11/9-14/9-10/9 otonal 9:10:11:14
60 0-8-9-21 1-14/11-14/9-10/9 werckismic
61 0-1-12-21 1-11/9-10/7-10/9 swetismic
62 0-8-12-21 1-14/11-10/7-10/9 werckismic
63 0-9-12-21 1-14/9-10/7-10/9 swetismic
64 0-1-13-21 1-11/9-7/4-10/9 werckismic
65 0-8-13-21 1-14/11-7/4-10/9 werckismic
66 0-9-13-21 1-14/9-7/4-10/9 werckismic
67 0-12-13-21 1-10/7-7/4-10/9 werckismic
68 0-8-20-21 1-14/11-20/11-10/9 werckismic
69 0-9-20-21 1-14/9-20/11-10/9 swetismic
70 0-12-20-21 1-10/7-20/11-10/9 utonal 1/(20:18:14:11)
71 0-2-3-23 1-3/2-11/6-5/3 otonal 6:9:10:11
72 0-2-11-23 1-3/2-7/6-5/3 otonal C\m6 6:7:9:10
73 0-3-11-23 1-11/6-7/6-5/3 otonal C\m6~7no5 6:7:10:11
74 0-3-12-23 1-11/6-10/7-5/3 swetismic
75 0-11-12-23 1-7/6-10/7-5/3 swetismic C\m6(\~5)
76 0-11-20-23 1-7/6-20/11-5/3 swetismic
77 0-12-20-23 1-10/7-20/11-5/3 utonal 1/(20:14:12:11)
78 0-12-21-23 1-10/7-10/9-5/3 utonal C/7 1-9/7-3/2-9/5 1/(9:7:6:5)
79 0-20-21-23 1-20/11-10/9-5/3 utonal C/7~13no3 1-3/2-18/11-9/5 1/(18:12:11:10)
80 0-2-4-25 1-3/2-9/8-5/4 otonal C\,9 4:5:6:9
81 0-2-5-25 1-3/2-11/8-5/4 otonal C\,~11 8:10:11:12
82 0-4-5-25 1-9/8-11/8-5/4 otonal C\,9(\b5) 8:9:10:11
83 0-4-12-25 1-9/8-10/7-5/4 werckismic C,9(\~5)
84 0-2-13-25 1-3/2-7/4-5/4 otonal C\7 4:5:6:7
85 0-4-13-25 1-9/8-7/4-5/4 otonal C\9no5 4:5:7:9
86 0-5-13-25 1-11/8-7/4-5/4 otonal C\7~11no5 4:5:7:11
87 0-12-13-25 1-10/7-7/4-5/4 werckismic C\7(\~5)
88 0-12-20-25 1-10/7-20/11-5/4 utonal C,\7(b5) 1-14/11-7/5-7/4 1/(20:16:14:11)
89 0-12-21-25 1-10/7-10/9-5/4 utonal C/9no5 1-9/7-9/5-9/4 1/(10:9:8:7)
90 0-13-21-25 1-7/4-10/9-5/4 werckismic C\7\9no5
91 0-20-21-25 1-20/11-10/9-5/4 utonal C2~6^7no5 1-18/11-9/5-9/4 1/(20:18:16:11)
92 0-2-23-25 1-3/2-5/3-5/4 ambitonal C\6 or C/m7 1-6/5-3/2-9/5
93 0-12-23-25 1-10/7-5/3-5/4 utonal C/m6
C\m7(b5)
1-6/5-3/2-12/7
1-7/6-7/5-7/4
1/(12:10:8:7)
1/(7:6:5:4)
94 0-20-23-25 1-20/11-5/3-5/4 utonal C/m,~9 1-6/5-3/2-24/11 1/(24:20:18:11)
95 0-21-23-25 1-10/9-5/3-5/4 utonal C/9no3 1-3/2-9/5-9/4 1/(9:6:5:4)

Pentads

# Genspans Transversal Type Name Inversion As harmonics
or subharmonics
1 0-1-2-3-4 1-11/9-3/2-11/6-9/8 rastmic C~9
2 0-1-2-3-5 1-11/9-3/2-11/6-11/8 rastmic C~11no9
3 0-1-2-4-5 1-11/9-3/2-9/8-11/8 rastmic C~11no7
4 0-1-3-4-5 1-11/9-11/6-9/8-11/8 rastmic C~11no5
5 0-2-3-4-5 1-3/2-11/6-9/8-11/8 rastmic C~11no3
6 0-3-4-5-8 1-11/6-9/8-11/8-14/11 parahemif
7 0-1-4-5-9 1-11/9-9/8-11/8-14/9 parahemif
8 0-4-5-8-9 1-9/8-11/8-14/11-14/9 parahemif
9 0-1-3-4-12 1-11/9-11/6-9/8-10/7 jove
10 0-3-4-8-12 1-11/6-9/8-14/11-10/7 hemififths
11 0-1-4-9-12 1-11/9-9/8-14/9-10/7 hemififths
12 0-4-8-9-12 1-9/8-14/11-14/9-10/7 hemififths
13 0-3-8-11-12 1-11/6-14/11-7/6-10/7 hemififths
14 0-8-9-11-12 1-14/11-14/9-7/6-10/7 jove
15 0-1-2-4-13 1-11/9-3/2-9/8-7/4 jove C~9(\m7)
16 0-1-2-5-13 1-11/9-3/2-11/8-7/4 jove
17 0-1-4-5-13 1-11/9-9/8-11/8-7/4 jove
18 0-2-4-5-13 1-3/2-9/8-11/8-7/4 otonal C\9~11no3 4:6:7:9:11
19 0-4-5-8-13 1-9/8-11/8-14/11-7/4 parahemif
20 0-1-4-9-13 1-11/9-9/8-14/9-7/4 hemififths
21 0-1-5-9-13 1-11/9-11/8-14/9-7/4 pele
22 0-4-5-9-13 1-9/8-11/8-14/9-7/4 pentacircle
23 0-4-8-9-13 1-9/8-14/11-14/9-7/4 pentacircle
24 0-5-8-9-13 1-11/8-14/11-14/9-7/4 parahemif
25 0-8-9-11-13 1-14/11-14/9-7/6-7/4 utonal C/,~6,9 1-9/7-3/2-18/11-9/4 1/(18:14:12:11:8)
26 0-1-4-12-13 1-11/9-9/8-10/7-7/4 jove
27 0-4-8-12-13 1-9/8-14/11-10/7-7/4 pele
28 0-1-9-12-13 1-11/9-14/9-10/7-7/4 jove
29 0-4-9-12-13 1-9/8-14/9-10/7-7/4 hemififths
30 0-8-9-12-13 1-14/11-14/9-10/7-7/4 jove
31 0-8-11-12-13 1-14/11-7/6-10/7-7/4 jove
32 0-9-11-12-13 1-14/9-7/6-10/7-7/4 jove
33 0-8-9-11-20 1-14/11-14/9-7/6-20/11 swetismic
34 0-8-9-12-20 1-14/11-14/9-10/7-20/11 jove
35 0-8-11-12-20 1-14/11-7/6-10/7-20/11 jove
36 0-9-11-12-20 1-14/9-7/6-10/7-20/11 swetismic
37 0-1-9-12-21 1-11/9-14/9-10/7-10/9 swetismic
38 0-8-9-12-21 1-14/11-14/9-10/7-10/9 jove
39 0-1-9-13-21 1-11/9-14/9-7/4-10/9 werckismic
40 0-8-9-13-21 1-14/11-14/9-7/4-10/9 werckismic
41 0-1-12-13-21 1-11/9-10/7-7/4-10/9 jove
42 0-8-12-13-21 1-14/11-10/7-7/4-10/9 werckismic
43 0-9-12-13-21 1-14/9-10/7-7/4-10/9 jove
44 0-8-9-20-21 1-14/11-14/9-20/11-10/9 jove
45 0-8-12-20-21 1-14/11-10/7-20/11-10/9 werckismic
46 0-9-12-20-21 1-14/9-10/7-20/11-10/9 swetismic
47 0-2-3-11-23 1-3/2-11/6-7/6-5/3 otonal C\m6~7 6:7:9:10:11
48 0-3-11-12-23 1-11/6-7/6-10/7-5/3 swetismic
49 0-11-12-20-23 1-7/6-10/7-20/11-5/3 swetismic
50 0-12-20-21-23 1-10/7-20/11-10/9-5/3 utonal C/7~6 1-9/7-3/2-18/11-9/5 1/(18:14:12:11:10)
51 0-2-4-5-25 1-3/2-9/8-11/8-5/4 otonal C\,9~11 4:5:6:9:11
52 0-2-4-13-25 1-3/2-9/8-7/4-5/4 otonal C\9 4:5:6:7:9
53 0-2-5-13-25 1-3/2-11/8-7/4-5/4 otonal C\7~11 4:5:6:7:11
54 0-4-5-13-25 1-9/8-11/8-7/4-5/4 otonal C\9~11no5 4:5:7:9:11
55 0-4-12-13-25 1-9/8-10/7-7/4-5/4 werckismic C\9(\~5)
56 0-12-13-21-25 1-10/7-7/4-10/9-5/4 werckismic
57 0-12-20-21-25 1-10/7-20/11-10/9-5/4 utonal C/9~6no5 1-9/7-18/11-9/5-9/4 1/(18:14:11:10:8)
58 0-12-20-23-25 1-10/7-20/11-5/3-5/4 utonal C/m6~9 1-6/5-3/2-12/7-24/11 1/(24:20:16:14:11)
59 0-12-21-23-25 1-10/7-10/9-5/3-5/4 utonal C/9 1-9/7-3/2-9/5-9/4 1/(9:7:6:5:4)
60 0-20-21-23-25 1-20/11-10/9-5/3-5/4 utonal C/9~6no3 1-3/2-18/11-9/5-9/4 1/(18:12:11:10:8)

Hexads

# Genspans Transversal Type Name Inversion As harmonics
or subharmonics
1 0-1-2-3-4-5 1-11/9-3/2-11/6-9/8-11/8 rastmic C~11
2 0-1-2-4-5-13 1-11/9-3/2-9/8-11/8-7/4 jove C~11(\m7)
3 0-1-4-5-9-13 1-11/9-9/8-11/8-14/9-7/4 hemififths
4 0-4-5-8-9-13 1-9/8-11/8-14/11-14/9-7/4 hemififths
5 0-1-4-9-12-13 1-11/9-9/8-14/9-10/7-7/4 hemififths
6 0-4-8-9-12-13 1-9/8-14/11-14/9-10/7-7/4 hemififths
7 0-8-9-11-12-13 1-14/11-14/9-7/6-10/7-7/4 jove
8 0-8-9-11-12-20 1-14/11-14/9-7/6-10/7-20/11 jove
9 0-1-9-12-13-21 1-11/9-14/9-10/7-7/4-10/9 jove
10 0-8-9-12-13-21 1-14/11-14/9-10/7-7/4-10/9 jove
11 0-8-9-12-20-21 1-14/11-14/9-10/7-20/11-10/9 jove
12 0-2-4-5-13-25 1-3/2-9/8-11/8-7/4-5/4 otonal C\9~11 4:5:6:7:9:11
13 0-12-20-21-23-25 1-10/7-20/11-10/9-5/3-5/4 utonal C/9~6 1-9/7-3/2-18/11-9/5-9/4 1/(18:14:12:11:10:8)