14edf: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
ArrowHead294 (talk | contribs) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | |||
14edf is related to [[24edo]], but with the perfect fifth rather than the [[2/1|octave]] being just, which stretches the octave by about 3.35 cents. The [[patent val]] has a generally sharp tendency for harmonics up to 22, with the exception for [[7/1|7]], [[14/1|14]], and [[21/1|21]]. | |||
==Harmonics== | === Harmonics === | ||
{{Harmonics in equal|14|3|2|intervals= | {{Harmonics in equal|14|3|2|intervals=integer|columns=11}} | ||
{{Harmonics in equal|14|3|2|start=12|collapsed= | {{Harmonics in equal|14|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14edf (continued)}} | ||
==Intervals== | === Subsets and supersets === | ||
{{todo|complete table|text= | Since 14 factors into primes as {{nowrap| 2 × 7 }}, 14edf contains subset edfs [[2edf]] and [[7edf]]. | ||
{| class="wikitable | |||
| | == Intervals == | ||
! | {{todo|inline=1|complete table|text=Add column with approximated JI ratios and/or notation.}} | ||
!Cents | |||
{| class="wikitable center-1 right-2" | |||
|- | |||
! # | |||
! Cents | |||
|- | |- | ||
|0 | | 0 | ||
|0 | | 0.0 | ||
|- | |- | ||
|1 | | 1 | ||
|50. | | 50.1 | ||
|- | |- | ||
|2 | | 2 | ||
|100. | | 100.3 | ||
|- | |- | ||
|3 | | 3 | ||
|150. | | 150.4 | ||
|- | |- | ||
|4 | | 4 | ||
|200. | | 200.6 | ||
|- | |- | ||
|5 | | 5 | ||
|250. | | 250.7 | ||
|- | |- | ||
|6 | | 6 | ||
|300. | | 300.8 | ||
|- | |- | ||
|7 | | 7 | ||
| | | 351.0 | ||
|- | |- | ||
|8 | | 8 | ||
|401. | | 401.1 | ||
|- | |- | ||
|9 | | 9 | ||
|451. | | 451.3 | ||
|- | |- | ||
|10 | | 10 | ||
|501. | | 501.4 | ||
|- | |- | ||
|11 | | 11 | ||
|551. | | 551.5 | ||
|- | |- | ||
|12 | | 12 | ||
|601. | | 601.7 | ||
|- | |- | ||
|13 | | 13 | ||
|651. | | 651.8 | ||
|- | |- | ||
|14 | | 14 | ||
| | | 702.0 | ||
|- | |- | ||
|15 | | 15 | ||
|752. | | 752.1 | ||
|- | |- | ||
|16 | | 16 | ||
|802. | | 802.2 | ||
|- | |- | ||
|17 | | 17 | ||
|852. | | 852.4 | ||
|- | |- | ||
|18 | | 18 | ||
|902. | | 902.5 | ||
|- | |- | ||
|19 | | 19 | ||
|952. | | 952.7 | ||
|- | |- | ||
|20 | | 20 | ||
|1002. | | 1002.8 | ||
|- | |- | ||
|21 | | 21 | ||
|1052. | | 1052.9 | ||
|- | |- | ||
|22 | | 22 | ||
|1103. | | 1103.1 | ||
|- | |- | ||
|23 | | 23 | ||
|1153. | | 1153.2 | ||
|- | |- | ||
|24 | | 24 | ||
|1203. | | 1203.4 | ||
|- | |- | ||
|25 | | 25 | ||
|1253. | | 1253.5 | ||
|- | |- | ||
|26 | | 26 | ||
|1303. | | 1303.6 | ||
|- | |- | ||
|27 | | 27 | ||
|1353. | | 1353.8 | ||
|- | |- | ||
|28 | | 28 | ||
|1403. | | 1403.9 | ||
|} | |} | ||
== See also == | |||
* [[24edo]] – relative edo | |||
* [[38edt]] – relative edt | |||
* [[56ed5]] – relative ed5 | |||
* [[62ed6]] – relative ed6 | |||
* [[83ed11]] – relative ed11 | |||
* [[86ed12]] – relative ed12 | |||
* [[198ed304]] – close to the zeta-optimized tuning for 24edo | |||
[[Category:24edo]] |
Latest revision as of 19:18, 25 June 2025
← 13edf | 14edf | 15edf → |
14 equal divisions of the perfect fifth (abbreviated 14edf or 14ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 14 equal parts of about 50.1 ¢ each. Each step represents a frequency ratio of (3/2)1/14, or the 14th root of 3/2.
Theory
14edf is related to 24edo, but with the perfect fifth rather than the octave being just, which stretches the octave by about 3.35 cents. The patent val has a generally sharp tendency for harmonics up to 22, with the exception for 7, 14, and 21.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | -9.5 | +10.1 | +6.7 | +24.9 | +10.3 | +10.1 |
Relative (%) | +6.7 | +6.7 | +13.4 | +42.9 | +13.4 | -18.9 | +20.1 | +13.4 | +49.6 | +20.5 | +20.1 | |
Steps (reduced) |
24 (10) |
38 (10) |
48 (6) |
56 (0) |
62 (6) |
67 (11) |
72 (2) |
76 (6) |
80 (10) |
83 (13) |
86 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +21.9 | -6.1 | +24.9 | +13.4 | +8.7 | +10.1 | +16.7 | -21.9 | -6.1 | +13.6 | -13.2 | +13.4 |
Relative (%) | +43.7 | -12.2 | +49.6 | +26.7 | +17.4 | +20.1 | +33.4 | -43.7 | -12.2 | +27.2 | -26.3 | +26.7 | |
Steps (reduced) |
89 (5) |
91 (7) |
94 (10) |
96 (12) |
98 (0) |
100 (2) |
102 (4) |
103 (5) |
105 (7) |
107 (9) |
108 (10) |
110 (12) |
Subsets and supersets
Since 14 factors into primes as 2 × 7, 14edf contains subset edfs 2edf and 7edf.
Intervals
# | Cents |
---|---|
0 | 0.0 |
1 | 50.1 |
2 | 100.3 |
3 | 150.4 |
4 | 200.6 |
5 | 250.7 |
6 | 300.8 |
7 | 351.0 |
8 | 401.1 |
9 | 451.3 |
10 | 501.4 |
11 | 551.5 |
12 | 601.7 |
13 | 651.8 |
14 | 702.0 |
15 | 752.1 |
16 | 802.2 |
17 | 852.4 |
18 | 902.5 |
19 | 952.7 |
20 | 1002.8 |
21 | 1052.9 |
22 | 1103.1 |
23 | 1153.2 |
24 | 1203.4 |
25 | 1253.5 |
26 | 1303.6 |
27 | 1353.8 |
28 | 1403.9 |