Countercomp family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Hemicountercomp: +minimal generator tunings; +13-limit; consolidate names
Tags: Mobile edit Mobile web edit
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''countercomp family''' tempers out the [[41-comma|Pythagorean countercomma]], {{monzo| 65 -41 }}, and hence the fifths form a closed 41-note circle of fifths, identical to [[41edo]].
The '''countercomp family''' tempers out the [[41-comma|Pythagorean countercomma]], {{monzo| 65 -41 }}, and hence the fifths form a closed 41-note circle of fifths, identical to [[41edo]].


Line 12: Line 13:
[[Optimal tuning]] ([[POTE]]): ~531441/524288 = 1\41, ~5/4 = 386.668
[[Optimal tuning]] ([[POTE]]): ~531441/524288 = 1\41, ~5/4 = 386.668


{{Val list|legend=1| 41, 123, 164, 205, 369, 574, 779, 2132bc }}
{{Optimal ET sequence|legend=1| 41, 123, 164, 205, 369, 574, 779, 2132bc }}


[[Badness]]: 0.934310
[[Badness]]: 0.934310
Line 22: Line 23:


[[Mapping]]: [{{val| 41 65 0 115 }}, {{val| 0 0 1 0 }}]
[[Mapping]]: [{{val| 41 65 0 115 }}, {{val| 0 0 1 0 }}]
{{Multival|legend=1| 0 41 0 65 0 -115 }}


[[Optimal tuning]] ([[POTE]]): ~64/63 = 1\41, ~5/4 = 385.731
[[Optimal tuning]] ([[POTE]]): ~64/63 = 1\41, ~5/4 = 385.731


{{Val list|legend=1| 41, 123, 164, 205d, 246d, 451dd }}
{{Optimal ET sequence|legend=1| 41, 123, 164, 205d, 246d, 451dd }}


[[Badness]]: 0.161056
[[Badness]]: 0.161056
Line 40: Line 39:
Optimal tuning (POTE): ~56/55 = 1\41, ~5/4 = 385.871
Optimal tuning (POTE): ~56/55 = 1\41, ~5/4 = 385.871


Optimal GPV sequence: {{Val list| 41, 123e, 164, 205d, 451dd }}
{{Optimal ET sequence|legend=1| 41, 123e, 164, 205d, 451dd }}


Badness: 0.076537
Badness: 0.076537
Line 53: Line 52:
Optimal tuning (POTE): ~56/55 = 1\41, ~5/4 = 386.604
Optimal tuning (POTE): ~56/55 = 1\41, ~5/4 = 386.604


Optimal GPV sequence: {{Val list| 41, 123e, 164, 205d }}
{{Optimal ET sequence|legend=1| 41, 123e, 164, 205d }}


Badness: 0.054921
Badness: 0.054921
Line 63: Line 62:


[[Mapping]]: [{{val| 41 65 0 20 }}, {{val| 0 0 1 1 }}]
[[Mapping]]: [{{val| 41 65 0 20 }}, {{val| 0 0 1 1 }}]
{{Multival|legend=1| 0 41 41 65 65 -20 }}


[[Optimal tuning]] ([[POTE]]): ~50/49 = 1\41, ~5/4 = 385.667
[[Optimal tuning]] ([[POTE]]): ~50/49 = 1\41, ~5/4 = 385.667


{{Val list|legend=1| 41, 123d, 164d, 205, 246, 451d, 697dd }}
{{Optimal ET sequence|legend=1| 41, 123d, 164d, 205, 246, 451d, 697dd }}


[[Badness]]: 0.142344
[[Badness]]: 0.142344
Line 81: Line 78:
Optimal tuning (POTE): ~55/54 = 1\41, ~5/4 = 385.309
Optimal tuning (POTE): ~55/54 = 1\41, ~5/4 = 385.309


Optimal GPV sequence: {{Val list| 41, 164d, 205, 246 }}
{{Optimal ET sequence|legend=1| 41, 164d, 205, 246 }}


Badness: 0.076588
Badness: 0.076588
Line 96: Line 93:
[[Optimal tuning]] ([[CTE]]): ~100352/98415 = 1\41, ~567/512 = 178.5314 (~5120/5103 = 2.9216)
[[Optimal tuning]] ([[CTE]]): ~100352/98415 = 1\41, ~567/512 = 178.5314 (~5120/5103 = 2.9216)


{{Val list|legend=1| 41, …, 328, 369, 779, 1927bc }}
{{Optimal ET sequence|legend=1| 41, …, 328, 369, 779, 1927bc }}


[[Badness]]: 0.134559
[[Badness]]: 0.134559
Line 109: Line 106:
Optimal tuning (CTE): ~56/55 = 1\41, ~567/512 = 178.6944 (~3025/3024 = 3.0846)
Optimal tuning (CTE): ~56/55 = 1\41, ~567/512 = 178.6944 (~3025/3024 = 3.0846)


Optimal GPV sequence: {{Val list| 41, …, 328, 369, 1066cee }}
{{Optimal ET sequence|legend=1| 41, …, 328, 369, 1066cee }}


Badness: 0.064400
Badness: 0.064400
Line 122: Line 119:
Optimal tuning (CTE): ~56/55 = 1\41, ~72/65 = 178.9389 (~352/351 = 3.3291)
Optimal tuning (CTE): ~56/55 = 1\41, ~72/65 = 178.9389 (~352/351 = 3.3291)


Optimal GPV sequence: {{Val list| 41, …, 328, 369f, 697cef }}
{{Optimal ET sequence|legend=1| 41, …, 328, 369f, 697cef }}


Badness: 0.0416
Badness: 0.0416
Line 135: Line 132:
Optimal tuning (CTE): ~55/54 = 1\41, ~256/231 = 178.3836 (~3024/3025 = 2.7738)
Optimal tuning (CTE): ~55/54 = 1\41, ~256/231 = 178.3836 (~3024/3025 = 2.7738)


Optimal GPV sequence: {{Val list| 41, …, 410, 451, 861e }}
{{Optimal ET sequence|legend=1| 41, …, 410, 451, 861e }}


Badness: 0.100152
Badness: 0.100152
Line 148: Line 145:
Optimal tuning (CTE): ~55/54 = 1\41, ~72/65 = 178.3755 (~352/351 = 2.7657)
Optimal tuning (CTE): ~55/54 = 1\41, ~72/65 = 178.3755 (~352/351 = 2.7657)


Optimal GPV sequence: {{Val list| 41, …, 410, 451, 861e }}
{{Optimal ET sequence|legend=1| 41, …, 410, 451, 861e }}


Badness: 0.0605
Badness: 0.0605


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Countercomp family| ]] <!-- main article -->
[[Category:Countercomp family| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 00:29, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The countercomp family tempers out the Pythagorean countercomma, [65 -41, and hence the fifths form a closed 41-note circle of fifths, identical to 41edo.

Countercomp

Subgroup: 2.3.5

Comma list: [65 -41

Mapping: [41 65 0], 0 0 1]]

Mapping generators: ~531441/524288, ~5/1

Optimal tuning (POTE): ~531441/524288 = 1\41, ~5/4 = 386.668

Optimal ET sequence41, 123, 164, 205, 369, 574, 779, 2132bc

Badness: 0.934310

Gamelacomp

Subgroup: 2.3.5.7

Comma list: 1029/1024, 537824/531441

Mapping: [41 65 0 115], 0 0 1 0]]

Optimal tuning (POTE): ~64/63 = 1\41, ~5/4 = 385.731

Optimal ET sequence41, 123, 164, 205d, 246d, 451dd

Badness: 0.161056

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 441/440, 537824/531441

Mapping: [41 65 0 115 237], 0 0 1 0 -1]]

Optimal tuning (POTE): ~56/55 = 1\41, ~5/4 = 385.871

Optimal ET sequence41, 123e, 164, 205d, 451dd

Badness: 0.076537

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 385/384, 59150/59049

Mapping: [41 65 0 115 237 247], 0 0 1 0 -1 -1]]

Optimal tuning (POTE): ~56/55 = 1\41, ~5/4 = 386.604

Optimal ET sequence41, 123e, 164, 205d

Badness: 0.054921

Mermacomp

Subgroup: 2.3.5.7

Comma list: 5120/5103, 2500000/2470629

Mapping: [41 65 0 20], 0 0 1 1]]

Optimal tuning (POTE): ~50/49 = 1\41, ~5/4 = 385.667

Optimal ET sequence41, 123d, 164d, 205, 246, 451d, 697dd

Badness: 0.142344

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 5120/5103, 75625/75264

Mapping: [41 65 0 20 237], 0 0 1 1 -1]]

Optimal tuning (POTE): ~55/54 = 1\41, ~5/4 = 385.309

Optimal ET sequence41, 164d, 205, 246

Badness: 0.076588

Hemicountercomp

Subgroup: 2.3.5.7

Comma list: 2401/2400, 52613349376/52301766015

Mapping: [41 65 1 68], 0 0 2 1]]

Mapping generators: ~100352/98415, ~567/256

Optimal tuning (CTE): ~100352/98415 = 1\41, ~567/512 = 178.5314 (~5120/5103 = 2.9216)

Optimal ET sequence41, …, 328, 369, 779, 1927bc

Badness: 0.134559

Hemicocomp

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 16384/16335, 19712/19683

Mapping: [41 65 1 68 189], 0 0 2 1 -1]]

Optimal tuning (CTE): ~56/55 = 1\41, ~567/512 = 178.6944 (~3025/3024 = 3.0846)

Optimal ET sequence41, …, 328, 369, 1066cee

Badness: 0.064400

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 3584/3575, 10648/10647

Mapping: [41 65 1 68 189 246], 0 0 2 1 -1 -2]]

Optimal tuning (CTE): ~56/55 = 1\41, ~72/65 = 178.9389 (~352/351 = 3.3291)

Optimal ET sequence41, …, 328, 369f, 697cef

Badness: 0.0416

Hemermacomp

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 59290/59049, 131072/130977

Mapping: [41 65 1 68 236], 0 0 2 1 -2]]

Optimal tuning (CTE): ~55/54 = 1\41, ~256/231 = 178.3836 (~3024/3025 = 2.7738)

Optimal ET sequence41, …, 410, 451, 861e

Badness: 0.100152

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4096/4095, 59290/59049

Mapping: [41 65 1 68 236 293], 0 0 2 1 -2 -3]]

Optimal tuning (CTE): ~55/54 = 1\41, ~72/65 = 178.3755 (~352/351 = 2.7657)

Optimal ET sequence41, …, 410, 451, 861e

Badness: 0.0605