Maja family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Note on the name
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''maja family''' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] the [[maja comma]], {{monzo| -3 -23 17 }} = 762939453125/753145430616.
The '''maja family''' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] the [[maja comma]], {{monzo| -3 -23 17 }} = 762939453125/753145430616.


Line 23: Line 24:
{{Mapping|legend=1| 1 8 11 13 | 0 -17 -23 -27 }}
{{Mapping|legend=1| 1 8 11 13 | 0 -17 -23 -27 }}


{{Multival|legend=1| 17 23 27 -3 -5 -2 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~54/35 = 747.145
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/81 = 747.145


{{Optimal ET sequence|legend=1| 8d, 45, 53 }}
{{Optimal ET sequence|legend=1| 8d, 45, 53 }}
Line 38: Line 37:
Mapping: {{mapping| 1 8 11 13 11 | 0 -17 -23 -27 -20 }}
Mapping: {{mapping| 1 8 11 13 11 | 0 -17 -23 -27 -20 }}


Optimal tuning (POTE): ~2 = 1\1, ~77/50 = 747.100
Optimal tuning (POTE): ~2 = 1\1, ~54/35 = 747.100


{{Optimal ET sequence|legend=1| 8d, 45e, 53 }}
{{Optimal ET sequence|legend=1| 8d, 45e, 53 }}
Line 63: Line 62:


{{Mapping|legend=1| 1 8 11 -7 | 0 -17 -23 26 }}
{{Mapping|legend=1| 1 8 11 -7 | 0 -17 -23 26 }}
{{Multival|legend=1| 17 23 -26 -3 -89 -125 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/81 = 747.264
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/81 = 747.264
Line 101: Line 98:


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Maja family| ]] <!-- main article -->
[[Category:Maja family| ]] <!-- main article -->
[[Category:Maja| ]] <!-- key article -->
[[Category:Maja| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 00:26, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The maja family of rank-2 temperaments tempers out the maja comma, [-3 -23 17 = 762939453125/753145430616.

Maja was named by Petr Pařízek in 2011 for 13/10 is a generator and that M and J are the 13th letter and the 10th letter, respectively[1]. It is unrelated to either the major quality or magic temperament.

Maja

Subgroup: 2.3.5

Comma list: 762939453125/753145430616

Mapping[1 8 11], 0 -17 -23]]

Optimal tuning (POTE): ~2 = 1\1, ~125/81 = 747.198

Optimal ET sequence8, 45, 53, 432, 485, 538, 591, 644, 697, 750, 803c

Badness: 0.361013

Septimal maja

Subgroup: 2.3.5.7

Comma list: 2430/2401, 3125/3087

Mapping[1 8 11 13], 0 -17 -23 -27]]

Optimal tuning (POTE): ~2 = 1\1, ~54/35 = 747.145

Optimal ET sequence8d, 45, 53

Badness: 0.089454

11-limit

Subgroup: 2.3.5.7.11

Comma list: 99/98, 121/120, 3125/3087

Mapping: [1 8 11 13 11], 0 -17 -23 -27 -20]]

Optimal tuning (POTE): ~2 = 1\1, ~54/35 = 747.100

Optimal ET sequence8d, 45e, 53

Badness: 0.049991

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 99/98, 121/120, 169/168, 275/273

Mapping: [1 8 11 13 11 12], 0 -17 -23 -27 -20 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~20/13 = 747.095

Optimal ET sequence8d, 45ef, 53

Badness: 0.027532

Majo

Subgroup: 2.3.5.7

Comma list: 6144/6125, 1250000/1240029

Mapping[1 8 11 -7], 0 -17 -23 26]]

Optimal tuning (POTE): ~2 = 1\1, ~125/81 = 747.264

Optimal ET sequence53, 167, 220, 493bd, 713bdd

Badness: 0.140489

11-limit

Subgroup: 2.3.5.7.11

Comma list: 2200/2187, 3388/3375, 6144/6125

Mapping: [1 8 11 -7 31], 0 -17 -23 26 -73]]

Optimal tuning (POTE): ~2 = 1\1, ~77/50 = 747.287

Optimal ET sequence53, 114e, 167, 220, 387bd

Badness: 0.081931

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 352/351, 1001/1000, 2704/2695

Mapping: [1 8 11 -7 31 12], 0 -17 -23 26 -73 -22]]

Optimal tuning (POTE): ~2 = 1\1, ~20/13 = 747.286

Optimal ET sequence53, 114e, 167, 220, 387bd

Badness: 0.043128

Notes