Lumatone mapping for 15edo: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Add layout to go with new description. |
||
(11 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Lumatone mapping intro}} You can use the extremely flat 8\15 fifth of 640¢. This layout preserves the location of the octave, and places the down-fifth where the fifth usually is. | |||
The [[Blackwood]] | {{Lumatone EDO mapping|n=15|start=12|xstep=1|ystep=4}} | ||
This makes fingerings for most simple chords awkward though. The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings. | |||
== [[Porcupine]] == | |||
{{Lumatone EDO mapping|n=15|start=0|xstep=2|ystep=1}} | |||
== [[Blackwood]] == | |||
{{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=13|xstep=3|ystep=-1}} | ||
== [[Hanson]] == | |||
{{Lumatone EDO mapping|n=15|start=9|xstep=4|ystep=-1}} | {{Lumatone EDO mapping|n=15|start=9|xstep=4|ystep=-1}} | ||
{{Lumatone | {{Navbox Lumatone}} | ||
Latest revision as of 09:47, 5 June 2025
There are many conceivable ways to map 15edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. You can use the extremely flat 8\15 fifth of 640¢. This layout preserves the location of the octave, and places the down-fifth where the fifth usually is.

12
13
2
3
4
5
6
6
7
8
9
10
11
12
13
11
12
13
14
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10
11
12
13
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0
1
2
3
4
5
9
10
11
12
13
14
0
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
9
10
11
12
13
14
0
1
2
3
4
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
This makes fingerings for most simple chords awkward though. The mappings that organise its intervals that make it easy to find consonant chords, in order of increasing compression, are the Porcupine, Blackwood, and Hanson mappings.
Porcupine

0
2
3
5
7
9
11
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
8
10
12
14
1
3
5
7
9
11
13
0
2
4
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
14
1
3
5
7
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
8
10
12
14
1
3
5
7
9
11
13
0
2
4
6
8
10
0
2
4
6
8
10
12
14
1
3
5
7
9
11
9
11
13
0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
0
10
12
14
1
3
2
4
Blackwood

13
1
0
3
6
9
12
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
4
7
10
13
1
0
3
6
9
12
0
3
6
9
12
0
3
6
9
12
0
3
8
11
14
2
5
8
11
14
2
5
8
11
14
2
4
7
10
13
1
4
7
10
13
1
4
12
0
3
6
9
12
0
3
8
11
14
2
5
1
4
Hanson

9
13
12
1
5
9
13
11
0
4
8
12
1
5
9
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
7
11
0
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
6
10
14
3
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
9
13
2
1
5
9
13
2
6
10
14
3
7
11
0
4
8
12
1
5
12
1
5
9
13
2
6
10
14
3
7
11
0
4
12
1
5
9
13
2
6
10
14
3
7
8
12
1
5
9
13
2
6
8
12
1
5
9
4
8