|
|
(9 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| 34edo is an interesting case for [[Lumatone]] mappings, since ([[Lumatone mapping for 24edo|like 24edo]]), it is not generated by fifths and octaves, so the [[Standard Lumatone mapping for Pythagorean]] only reaches [[17edo]] intervals unless you use the b val instead, which generates [[mabila]].
| | {{Lumatone mapping intro}} |
| | |
| | == Mabila == |
| | You can use the b val instead, which generates [[Mabila]], but this puts the perfect fifth in awkward places. |
| {{Lumatone EDO mapping|n=34|start=14|xstep=4|ystep=3}} | | {{Lumatone EDO mapping|n=34|start=14|xstep=4|ystep=3}} |
|
| |
|
| | | == Tetracot == |
| However, this puts the perfect 5th in awkward places. The [[Tetracot]] mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect 5th is in a straight line from the root, while single steps are neatly mapped to the vertical axis.
| | The [[6L 1s]] [[Tetracot]] mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect fifth is in a straight line from the root, the [[7L 6s]] MOS makes 5-limit major and minor chords very easily accessible, and single steps are neatly mapped to the vertical axis. However, the range is reduced to slightly over four octaves. |
| {{Lumatone EDO mapping|n=34|start=25|xstep=5|ystep=-1}} | | {{Lumatone EDO mapping|n=34|start=25|xstep=5|ystep=-1}} |
|
| |
|
| | == Semiquartal (Immunity) == |
| | If you want greater range you can slice the perfect fourth in two and use the [[Immunity]] mapping. However, the resulting [[5L 4s]] MOS has a 6:1 step ratio, making it quite lopsided: |
| | {{Lumatone EDO mapping|n=34|start=19|xstep=7|ystep=-1}} |
|
| |
|
| If you want greater range you can slice the perfect 4th in two and use the [[immunity]] mapping:
| | == Hanson == |
| {{Lumatone EDO mapping|n=34|start=19|xstep=7|ystep=-1}} | | The [[Hanson]] mapping also puts 5-limit consonances within easy reach of each other, but does not cover the full gamut unless expanded from the [[3L 1s]] mapping to [[4L 3s]]. |
| | {{Lumatone EDO mapping|n=34|start=19|xstep=9|ystep=-2}} |
|
| |
|
|
| |
|
| Or the [[kleismic]] mapping, although the [[3L 1s]] mapping does not quite cover the whole gamut.
| | {{Lumatone EDO mapping|n=34|start=3|xstep=7|ystep=-5}} |
| {{Lumatone EDO mapping|n=34|start=19|xstep=9|ystep=-2}} | |
|
| |
|
| {{Lumatone mapping navigation}} | | {{Navbox Lumatone}} |
Latest revision as of 22:07, 17 May 2025
There are many conceivable ways to map 34edo onto the onto the Lumatone keyboard. However, it has 2 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.
Mabila
You can use the b val instead, which generates Mabila, but this puts the perfect fifth in awkward places.
14
18
21
25
29
33
3
24
28
32
2
6
10
14
18
31
1
5
9
13
17
21
25
29
33
3
0
4
8
12
16
20
24
28
32
2
6
10
14
18
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
14
18
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
14
18
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
12
16
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
12
16
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
12
16
20
24
28
32
2
6
10
14
18
22
26
30
31
1
5
9
13
17
21
25
29
33
3
12
16
20
24
28
32
2
6
31
1
5
9
13
12
16
Tetracot
The 6L 1s Tetracot mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect fifth is in a straight line from the root, the 7L 6s MOS makes 5-limit major and minor chords very easily accessible, and single steps are neatly mapped to the vertical axis. However, the range is reduced to slightly over four octaves.
25
30
29
0
5
10
15
28
33
4
9
14
19
24
29
32
3
8
13
18
23
28
33
4
9
14
31
2
7
12
17
22
27
32
3
8
13
18
23
28
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
24
29
0
5
10
15
20
25
30
1
6
11
16
21
9
14
19
24
29
0
5
10
15
20
25
23
28
33
4
9
14
19
24
8
13
18
23
28
22
27
Semiquartal (Immunity)
If you want greater range you can slice the perfect fourth in two and use the Immunity mapping. However, the resulting 5L 4s MOS has a 6:1 step ratio, making it quite lopsided:
19
26
25
32
5
12
19
24
31
4
11
18
25
32
5
30
3
10
17
24
31
4
11
18
25
32
29
2
9
16
23
30
3
10
17
24
31
4
11
18
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
4
11
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
10
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
30
3
10
17
24
31
4
11
18
25
32
5
12
19
23
30
3
10
17
24
31
4
11
18
25
9
16
23
30
3
10
17
24
2
9
16
23
30
22
29
Hanson
The Hanson mapping also puts 5-limit consonances within easy reach of each other, but does not cover the full gamut unless expanded from the 3L 1s mapping to 4L 3s.
19
28
26
1
10
19
28
24
33
8
17
26
1
10
19
31
6
15
24
33
8
17
26
1
10
19
29
4
13
22
31
6
15
24
33
8
17
26
1
10
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
10
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
3
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
3
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
11
28
3
12
21
30
5
14
23
32
7
16
25
0
9
28
3
12
21
30
5
14
23
32
7
16
19
28
3
12
21
30
5
14
19
28
3
12
21
10
19
3
10
5
12
19
26
33
0
7
14
21
28
1
8
15
2
9
16
23
30
3
10
17
24
31
4
31
4
11
18
25
32
5
12
19
26
33
6
13
20
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
4
11
18
25
30
3
10
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
4
11
18
25
32
5
12
19
16
23
30
3
10
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
4
11
18
10
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
26
33
6
13
20
27
0
7
14
21
28
1
8
15
15
22
29
2
9
16
23
30
3
10
17
31
4
11
18
25
32
5
12
20
27
0
7
14
2
9