Lumatone mapping for 32edo
There are many conceivable ways to map 32edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.
Diatonic
8
14
9
15
21
27
1
4
10
16
22
28
2
8
14
5
11
17
23
29
3
9
15
21
27
1
0
6
12
18
24
30
4
10
16
22
28
2
8
14
1
7
13
19
25
31
5
11
17
23
29
3
9
15
21
27
1
28
2
8
14
20
26
0
6
12
18
24
30
4
10
16
22
28
2
8
14
29
3
9
15
21
27
1
7
13
19
25
31
5
11
17
23
29
3
9
15
21
27
1
24
30
4
10
16
22
28
2
8
14
20
26
0
6
12
18
24
30
4
10
16
22
28
2
8
14
31
5
11
17
23
29
3
9
15
21
27
1
7
13
19
25
31
5
11
17
23
29
3
9
15
21
27
1
12
18
24
30
4
10
16
22
28
2
8
14
20
26
0
6
12
18
24
30
4
10
16
22
28
2
31
5
11
17
23
29
3
9
15
21
27
1
7
13
19
25
31
5
11
17
23
29
3
12
18
24
30
4
10
16
22
28
2
8
14
20
26
0
6
12
18
24
30
31
5
11
17
23
29
3
9
15
21
27
1
7
13
19
25
31
12
18
24
30
4
10
16
22
28
2
8
14
20
26
31
5
11
17
23
29
3
9
15
21
27
12
18
24
30
4
10
16
22
31
5
11
17
23
12
18
Sixix
Note that since 32edo is a ultrapyth temperament, the best approximation to 5/4 is a doubly-augmented unison, which makes for awkward fingerings. The sixix mapping makes the 5-limit as easily accessible as possible while also maximising the range.
30
7
3
12
21
30
7
31
8
17
26
3
12
21
30
4
13
22
31
8
17
26
3
12
21
30
0
9
18
27
4
13
22
31
8
17
26
3
12
21
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
12
21
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
12
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
12
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
30
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
30
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
21
30
7
16
25
2
11
20
29
6
15
24
1
10
21
30
7
16
25
2
11
20
29
6
15
12
21
30
7
16
25
2
11
12
21
30
7
16
3
12