Lumatone mapping for 32edo
Jump to navigation
Jump to search
There are many conceivable ways to map 32edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.
8
14
9
15
21
27
1
4
10
16
22
28
2
8
14
5
11
17
23
29
3
9
15
21
27
1
0
6
12
18
24
30
4
10
16
22
28
2
8
14
1
7
13
19
25
31
5
11
17
23
29
3
9
15
21
27
1
28
2
8
14
20
26
0
6
12
18
24
30
4
10
16
22
28
2
8
14
29
3
9
15
21
27
1
7
13
19
25
31
5
11
17
23
29
3
9
15
21
27
1
24
30
4
10
16
22
28
2
8
14
20
26
0
6
12
18
24
30
4
10
16
22
28
2
8
14
31
5
11
17
23
29
3
9
15
21
27
1
7
13
19
25
31
5
11
17
23
29
3
9
15
21
27
1
12
18
24
30
4
10
16
22
28
2
8
14
20
26
0
6
12
18
24
30
4
10
16
22
28
2
31
5
11
17
23
29
3
9
15
21
27
1
7
13
19
25
31
5
11
17
23
29
3
12
18
24
30
4
10
16
22
28
2
8
14
20
26
0
6
12
18
24
30
31
5
11
17
23
29
3
9
15
21
27
1
7
13
19
25
31
12
18
24
30
4
10
16
22
28
2
8
14
20
26
31
5
11
17
23
29
3
9
15
21
27
12
18
24
30
4
10
16
22
31
5
11
17
23
12
18
Note that since 32edo is a ultrapyth temperament, the best approximation to 5/4 is a double augmented unison, which makes for awkward fingerings. The sixix mapping makes the 5-limit as easily accessible as possible while also maximising the range.
30
7
3
12
21
30
7
31
8
17
26
3
12
21
30
4
13
22
31
8
17
26
3
12
21
30
0
9
18
27
4
13
22
31
8
17
26
3
12
21
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
12
21
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
12
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
12
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
17
26
3
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
22
31
8
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
18
27
4
13
30
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
23
0
9
30
7
16
25
2
11
20
29
6
15
24
1
10
19
28
5
14
21
30
7
16
25
2
11
20
29
6
15
24
1
10
21
30
7
16
25
2
11
20
29
6
15
12
21
30
7
16
25
2
11
12
21
30
7
16
3
12