Lumatone mapping for 35edo
Jump to navigation
Jump to search
There are many conceivable ways to map 35edo onto the onto the Lumatone keyboard. However, it has 5 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.
Combined Blackwood and Whitewood
The most sensible option is probably to combine the 5edo and 7edo rings, with the vertical axis splitting the difference.

23
30
28
0
7
14
21
26
33
5
12
19
26
33
5
31
3
10
17
24
31
3
10
17
24
31
29
1
8
15
22
29
1
8
15
22
29
1
8
15
34
6
13
20
27
34
6
13
20
27
34
6
13
20
27
34
6
32
4
11
18
25
32
4
11
18
25
32
4
11
18
25
32
4
11
18
25
2
9
16
23
30
2
9
16
23
30
2
9
16
23
30
2
9
16
23
30
2
9
16
0
7
14
21
28
0
7
14
21
28
0
7
14
21
28
0
7
14
21
28
0
7
14
21
28
0
12
19
26
33
5
12
19
26
33
5
12
19
26
33
5
12
19
26
33
5
12
19
26
33
5
12
19
26
31
3
10
17
24
31
3
10
17
24
31
3
10
17
24
31
3
10
17
24
31
3
10
17
24
31
22
29
1
8
15
22
29
1
8
15
22
29
1
8
15
22
29
1
8
15
22
29
1
6
13
20
27
34
6
13
20
27
34
6
13
20
27
34
6
13
20
27
34
32
4
11
18
25
32
4
11
18
25
32
4
11
18
25
32
4
16
23
30
2
9
16
23
30
2
9
16
23
30
2
7
14
21
28
0
7
14
21
28
0
7
26
33
5
12
19
26
33
5
17
24
31
3
10
1
8
Muggles
If you want a heptatonic scale with distinct step sizes that makes fingering 5-limit chords easier, the muggles mapping is functional, if somewhat uneven.

19
21
28
30
32
34
1
0
2
4
6
8
10
12
14
9
11
13
15
17
19
21
23
25
27
29
16
18
20
22
24
26
28
30
32
34
1
3
5
7
25
27
29
31
33
0
2
4
6
8
10
12
14
16
18
20
22
32
34
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
0
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
1
3
5
7
9
11
13
15
13
15
17
19
21
23
25
27
29
31
33
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
24
26
28
30
32
34
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
0
2
4
6
8
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
1
3
5
7
9
11
13
15
17
17
19
21
23
25
27
29
31
33
0
2
4
6
8
10
12
14
16
18
20
22
24
26
30
32
34
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
10
12
14
16
18
20
22
24
26
28
30
32
34
1
3
5
7
23
25
27
29
31
33
0
2
4
6
8
10
12
14
3
5
7
9
11
13
15
17
19
21
23
16
18
20
22
24
26
28
30
31
33
0
2
4
9
11