Lumatone mapping for 35edo
Jump to navigation
Jump to search
There are many conceivable ways to map 35edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. The most sensible option is probably to combine the 5edo and 7edo rings, with the vertical axis splitting the difference.
23
30
28
0
7
14
21
26
33
5
12
19
26
33
5
31
3
10
17
24
31
3
10
17
24
31
29
1
8
15
22
29
1
8
15
22
29
1
8
15
34
6
13
20
27
34
6
13
20
27
34
6
13
20
27
34
6
32
4
11
18
25
32
4
11
18
25
32
4
11
18
25
32
4
11
18
25
2
9
16
23
30
2
9
16
23
30
2
9
16
23
30
2
9
16
23
30
2
9
16
0
7
14
21
28
0
7
14
21
28
0
7
14
21
28
0
7
14
21
28
0
7
14
21
28
0
12
19
26
33
5
12
19
26
33
5
12
19
26
33
5
12
19
26
33
5
12
19
26
33
5
12
19
26
31
3
10
17
24
31
3
10
17
24
31
3
10
17
24
31
3
10
17
24
31
3
10
17
24
31
22
29
1
8
15
22
29
1
8
15
22
29
1
8
15
22
29
1
8
15
22
29
1
6
13
20
27
34
6
13
20
27
34
6
13
20
27
34
6
13
20
27
34
32
4
11
18
25
32
4
11
18
25
32
4
11
18
25
32
4
16
23
30
2
9
16
23
30
2
9
16
23
30
2
7
14
21
28
0
7
14
21
28
0
7
26
33
5
12
19
26
33
5
17
24
31
3
10
1
8
If you want a heptatonic scale with distinct step sizes that makes fingering 5-limit chords easier, the muggles mapping is functional, if somewhat uneven.
19
21
28
30
32
34
1
0
2
4
6
8
10
12
14
9
11
13
15
17
19
21
23
25
27
29
16
18
20
22
24
26
28
30
32
34
1
3
5
7
25
27
29
31
33
0
2
4
6
8
10
12
14
16
18
20
22
32
34
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
0
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
1
3
5
7
9
11
13
15
13
15
17
19
21
23
25
27
29
31
33
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
24
26
28
30
32
34
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
0
2
4
6
8
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
1
3
5
7
9
11
13
15
17
17
19
21
23
25
27
29
31
33
0
2
4
6
8
10
12
14
16
18
20
22
24
26
30
32
34
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
10
12
14
16
18
20
22
24
26
28
30
32
34
1
3
5
7
23
25
27
29
31
33
0
2
4
6
8
10
12
14
3
5
7
9
11
13
15
17
19
21
23
16
18
20
22
24
26
28
30
31
33
0
2
4
9
11