Lumatone mapping for 36edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 36edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. Since it is highly composite, many other mappings will also fail to cover the entire gamut, including both the second and third best alternative 5ths. If you want an evenly distributed heptatonic scale that gives easy access to the perfect fifth, you instead need to use the squirrel mapping.

Lumatone.svg
15
20
21
26
31
0
5
22
27
32
1
6
11
16
21
28
33
2
7
12
17
22
27
32
1
6
29
34
3
8
13
18
23
28
33
2
7
12
17
22
35
4
9
14
19
24
29
34
3
8
13
18
23
28
33
2
7
0
5
10
15
20
25
30
35
4
9
14
19
24
29
34
3
8
13
18
23
6
11
16
21
26
31
0
5
10
15
20
25
30
35
4
9
14
19
24
29
34
3
8
7
12
17
22
27
32
1
6
11
16
21
26
31
0
5
10
15
20
25
30
35
4
9
14
19
24
18
23
28
33
2
7
12
17
22
27
32
1
6
11
16
21
26
31
0
5
10
15
20
25
30
35
4
9
34
3
8
13
18
23
28
33
2
7
12
17
22
27
32
1
6
11
16
21
26
31
0
5
10
15
19
24
29
34
3
8
13
18
23
28
33
2
7
12
17
22
27
32
1
6
11
16
21
35
4
9
14
19
24
29
34
3
8
13
18
23
28
33
2
7
12
17
22
20
25
30
35
4
9
14
19
24
29
34
3
8
13
18
23
28
0
5
10
15
20
25
30
35
4
9
14
19
24
29
21
26
31
0
5
10
15
20
25
30
35
1
6
11
16
21
26
31
0
22
27
32
1
6
2
7


The Liese mapping also provides a heptatonic scale which reaches the fifth in three steps, and keeps octaves horizontal, but is very lopsided.

Lumatone.svg
24
26
1
3
5
7
9
12
14
16
18
20
22
24
26
25
27
29
31
33
35
1
3
5
7
9
0
2
4
6
8
10
12
14
16
18
20
22
24
26
13
15
17
19
21
23
25
27
29
31
33
35
1
3
5
7
9
24
26
28
30
32
34
0
2
4
6
8
10
12
14
16
18
20
22
24
26
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
1
3
5
7
9
12
14
16
18
20
22
24
26
28
30
32
34
0
2
4
6
8
10
12
14
16
18
20
22
24
26
27
29
31
33
35
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
1
3
5
7
9
8
10
12
14
16
18
20
22
24
26
28
30
32
34
0
2
4
6
8
10
12
14
16
18
20
22
27
29
31
33
35
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
8
10
12
14
16
18
20
22
24
26
28
30
32
34
0
2
4
6
8
10
27
29
31
33
35
1
3
5
7
9
11
13
15
17
19
21
23
8
10
12
14
16
18
20
22
24
26
28
30
32
34
27
29
31
33
35
1
3
5
7
9
11
8
10
12
14
16
18
20
22
27
29
31
33
35
8
10


However, since 36edo works best as a 7-limit system, the slendric mapping is probably preferable, since it most efficiently takes advantage of the very accurate 3 and 7 while also spanning the widest range that allows access to the full gamut at the same time.

Lumatone.svg
9
16
17
24
31
2
9
18
25
32
3
10
17
24
31
26
33
4
11
18
25
32
3
10
17
24
27
34
5
12
19
26
33
4
11
18
25
32
3
10
35
6
13
20
27
34
5
12
19
26
33
4
11
18
25
32
3
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
11
18
25
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
11
18
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
3
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
25
32
3
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
18
25
32
3
10
17
24
31
2
9
16
23
30
1
8
15
22
4
11
18
25
32
3
10
17
24
31
2
9
16
23
33
4
11
18
25
32
3
10
17
24
31
19
26
33
4
11
18
25
32
12
19
26
33
4
34
5


Reversing the direction of the chroma makes the diatonic scale easier to play, but makes fingerings for many chords somewhat awkward while putting octaves all over the place.

Lumatone.svg
21
28
27
34
5
12
19
26
33
4
11
18
25
32
3
32
3
10
17
24
31
2
9
16
23
30
31
2
9
16
23
30
1
8
15
22
29
0
7
14
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
11
18
25
6
13
20
27
34
5
12
19
26
33
4
11
18
25
32
3
10
17
24
31
2
9
16
5
12
19
26
33
4
11
18
25
32
3
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
18
25
32
3
10
17
24
31
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
2
9
16
23
30
1
8
15
22
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
29
0
7
14
21
28
35
6
13
20
27
34
5
12
19
26
33
4
11
18
25
32
3
13
20
27
34
5
12
19
26
33
4
11
18
25
32
3
10
17
24
31
2
4
11
18
25
32
3
10
17
24
31
2
9
16
23
30
1
8
24
31
2
9
16
23
30
1
8
15
22
29
0
7
15
22
29
0
7
14
21
28
35
6
13
35
6
13
20
27
34
5
12
26
33
4
11
18
10
17