248edo: Difference between revisions
m Infobox ET now computes most parameters automatically |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
248edo shares the mapping of [[harmonic]]s [[5/1|5]] and [[7/1|7]] with [[31edo]]. It has a decent 13-limit interpretation despite not being [[consistent]]. The equal temperament [[tempering out|tempers out]] [[32805/32768]] in the 5-limit; [[3136/3125]] and [[420175/419904]] in the 7-limit; [[441/440]], [[8019/8000]] in the 11-limit; [[729/728]], [[847/845]], [[1001/1000]], [[1575/1573]] and [[2200/2197]] in the 13-limit. It also notably tempers out the [[quartisma]]. 248edo, additionally, has the interesting property of its mapping for all prime harmonics 3 to 23 being a multiple of 3, and therefore derived from [[131edt]]. Similarly, using the lower-error 248[[Wart notation|h]] val, the mappings of all its [[2.5.7_subgroup|no-3]] harmonics up to [[23-limit|28]] are multiples of 2 and derived from [[124edo]]. | |||
It [[support]]s [[ | It [[support]]s the [[bischismic]] temperament, providing the [[optimal patent val]] for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for the [[essence]] temperament. It is notable for its combination of precise intonation with an abundance of essentially tempered chords. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|248|}} | {{Harmonics in equal|248|}} | ||
=== Subsets and supersets === | |||
Since 248 factors into {{factorization|248}}, 248edo has subset edos {{EDOs| 2, 4, 8, 31, 62, and 124 }}. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 23: | Line 27: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 287 -181 }} | | {{monzo| 287 -181 }} | ||
| | | {{mapping| 248 393 }} | ||
| +0.108 | | +0.108 | ||
| 0.108 | | 0.108 | ||
Line 30: | Line 34: | ||
| 2.3.5 | | 2.3.5 | ||
| 32805/32768, {{monzo| 12 32 -27 }} | | 32805/32768, {{monzo| 12 32 -27 }} | ||
| | | {{mapping| 248 393 576 }} | ||
| -0.041 | | -0.041 | ||
| 0.228 | | 0.228 | ||
Line 37: | Line 41: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 3136/3125, 32805/32768, 420175/419904 | | 3136/3125, 32805/32768, 420175/419904 | ||
| | | {{mapping| 248 393 576 696 }} | ||
| +0.066 | | +0.066 | ||
| 0.270 | | 0.270 | ||
Line 44: | Line 48: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 441/440, 3136/3125, 8019/8000, 41503/41472 | | 441/440, 3136/3125, 8019/8000, 41503/41472 | ||
| | | {{mapping| 248 393 576 696 858 }} | ||
| +0.036 | | +0.036 | ||
| 0.249 | | 0.249 | ||
Line 51: | Line 55: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 441/440, 729/728, 847/845, 1001/1000, 3136/3125 | | 441/440, 729/728, 847/845, 1001/1000, 3136/3125 | ||
| | | {{mapping| 248 393 576 696 858 918 }} | ||
| +0.079 | | +0.079 | ||
| 0.275 | | 0.275 | ||
Line 59: | Line 63: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 76: | Line 81: | ||
| 498.39 | | 498.39 | ||
| 4/3 | | 4/3 | ||
| [[Helmholtz]] | | [[Helmholtz (temperament)|Helmholtz]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 77\248<br>(47\248) | | 77\248<br />(47\248) | ||
| 372.58<br>(227.42) | | 372.58<br />(227.42) | ||
| 26/21<br>(154/135) | | 26/21<br />(154/135) | ||
| [[Essence]] | | [[Essence]] | ||
|- | |- | ||
Line 91: | Line 96: | ||
|- | |- | ||
| 8 | | 8 | ||
| 117\248<br>(7\248) | | 117\248<br />(7\248) | ||
| 566.13<br>(33.87) | | 566.13<br />(33.87) | ||
| 104/75<br>(49/48) | | 104/75<br />(49/48) | ||
| [[Octowerck]] | | [[Octowerck]] | ||
|- | |- | ||
| 31 | | 31 | ||
| 103\248<br>(1\248) | | 103\248<br />(1\248) | ||
| 498.39<br>(4.84) | | 498.39<br />(4.84) | ||
| 4/3<br>(385/384) | | 4/3<br />(385/384) | ||
| [[Birds]] | | [[Birds]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Bischismic]] | [[Category:Bischismic]] | ||
[[Category:Essence]] | [[Category:Essence]] | ||
Latest revision as of 02:29, 17 April 2025
← 247edo | 248edo | 249edo → |
248 equal divisions of the octave (abbreviated 248edo or 248ed2), also called 248-tone equal temperament (248tet) or 248 equal temperament (248et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 248 equal parts of about 4.84 ¢ each. Each step represents a frequency ratio of 21/248, or the 248th root of 2.
Theory
248edo shares the mapping of harmonics 5 and 7 with 31edo. It has a decent 13-limit interpretation despite not being consistent. The equal temperament tempers out 32805/32768 in the 5-limit; 3136/3125 and 420175/419904 in the 7-limit; 441/440, 8019/8000 in the 11-limit; 729/728, 847/845, 1001/1000, 1575/1573 and 2200/2197 in the 13-limit. It also notably tempers out the quartisma. 248edo, additionally, has the interesting property of its mapping for all prime harmonics 3 to 23 being a multiple of 3, and therefore derived from 131edt. Similarly, using the lower-error 248h val, the mappings of all its no-3 harmonics up to 28 are multiples of 2 and derived from 124edo.
It supports the bischismic temperament, providing the optimal patent val for 11-limit bischismic, and excellent tunings in the 7- and 13-limits. It also provides the optimal patent val for the essence temperament. It is notable for its combination of precise intonation with an abundance of essentially tempered chords.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.34 | +0.78 | -1.08 | +0.29 | +1.41 | +1.50 | -2.35 | +0.76 | +1.07 | +1.74 |
Relative (%) | +0.0 | -7.1 | +16.2 | -22.4 | +6.1 | +29.1 | +30.9 | -48.6 | +15.7 | +22.1 | +35.9 | |
Steps (reduced) |
248 (0) |
393 (145) |
576 (80) |
696 (200) |
858 (114) |
918 (174) |
1014 (22) |
1053 (61) |
1122 (130) |
1205 (213) |
1229 (237) |
Subsets and supersets
Since 248 factors into 23 × 31, 248edo has subset edos 2, 4, 8, 31, 62, and 124.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [287 -181⟩ | [⟨248 393]] | +0.108 | 0.108 | 2.23 |
2.3.5 | 32805/32768, [12 32 -27⟩ | [⟨248 393 576]] | -0.041 | 0.228 | 4.70 |
2.3.5.7 | 3136/3125, 32805/32768, 420175/419904 | [⟨248 393 576 696]] | +0.066 | 0.270 | 5.58 |
2.3.5.7.11 | 441/440, 3136/3125, 8019/8000, 41503/41472 | [⟨248 393 576 696 858]] | +0.036 | 0.249 | 5.15 |
2.3.5.7.11.13 | 441/440, 729/728, 847/845, 1001/1000, 3136/3125 | [⟨248 393 576 696 858 918]] | +0.079 | 0.275 | 5.69 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 5\248 | 24.19 | 686/675 | Sengagen |
1 | 103\248 | 498.39 | 4/3 | Helmholtz |
2 | 77\248 (47\248) |
372.58 (227.42) |
26/21 (154/135) |
Essence |
2 | 103\248 | 498.39 | 4/3 | Bischismic |
8 | 117\248 (7\248) |
566.13 (33.87) |
104/75 (49/48) |
Octowerck |
31 | 103\248 (1\248) |
498.39 (4.84) |
4/3 (385/384) |
Birds |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct