961edo: Difference between revisions
m Adopt template: Factorization; misc. cleanup |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
961edo has a reasonable 7-limit interpretation. The equal temperament [[Tempering out|tempers out]] the [[schisma]] in the 5-limit; [[4375/4374]], [[65625/65536]], and [[14348907/14336000]] in the 7-limit, supporting [[pontiac]], the 395 & 566 temperament. | 961edo has a reasonable 7-limit interpretation. The equal temperament [[Tempering out|tempers out]] the [[schisma]] in the 5-limit; [[4375/4374]], [[65625/65536]], and [[14348907/14336000]] in the 7-limit, supporting [[pontiac]], the {{nowrap|395 & 566}} temperament. | ||
In the 11-limit, the 961e [[val]] {{val| 961 1523 2231 '''2698''' '''3324''' }} scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val {{val| 961 1523 2231 '''2697''' '''3324''' }}, which tempers out [[3025/3024]] and 184877/184320. The [[patent val]] {{val| 961 1523 2231 '''2698''' '''3325''' }} tempers out [[4000/3993]] and 46656/46585. | In the 11-limit, the 961e [[val]] {{val| 961 1523 2231 '''2698''' '''3324''' }} scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val {{val| 961 1523 2231 '''2697''' '''3324''' }}, which tempers out [[3025/3024]] and 184877/184320. The [[patent val]] {{val| 961 1523 2231 '''2698''' '''3325''' }} tempers out [[4000/3993]] and 46656/46585. | ||
Line 17: | Line 17: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
Line 29: | Line 30: | ||
| {{monzo|-1523 961}} | | {{monzo|-1523 961}} | ||
| {{mapping| 961 1523 }} | | {{mapping| 961 1523 }} | ||
| 0.0587 | | +0.0587 | ||
| 0.0587 | | 0.0587 | ||
| 4.70 | | 4.70 | ||
Line 36: | Line 37: | ||
| 32805/32768, {{monzo| -22 -137 103 }} | | 32805/32768, {{monzo| -22 -137 103 }} | ||
| {{mapping| 961 1523 2231 }} | | {{mapping| 961 1523 2231 }} | ||
| 0.1060 | | +0.1060 | ||
| 0.0823 | | 0.0823 | ||
| 6.59 | | 6.59 | ||
Line 43: | Line 44: | ||
| 4375/4374, 32805/32768, {{monzo| 15 9 14 -22 }} | | 4375/4374, 32805/32768, {{monzo| 15 9 14 -22 }} | ||
| {{mapping| 961 1523 2231 2698 }} | | {{mapping| 961 1523 2231 2698 }} | ||
| 0.0648 | | +0.0648 | ||
| 0.1008 | | 0.1008 | ||
| 8.01 | | 8.01 | ||
Line 50: | Line 51: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 63: | Line 65: | ||
| [[Pontiac]] | | [[Pontiac]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Scales == | == Scales == |
Latest revision as of 12:43, 21 February 2025
← 960edo | 961edo | 962edo → |
961 equal divisions of the octave (abbreviated 961edo or 961ed2), also called 961-tone equal temperament (961tet) or 961 equal temperament (961et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 961 equal parts of about 1.25 ¢ each. Each step represents a frequency ratio of 21/961, or the 961st root of 2.
Theory
961edo has a reasonable 7-limit interpretation. The equal temperament tempers out the schisma in the 5-limit; 4375/4374, 65625/65536, and 14348907/14336000 in the 7-limit, supporting pontiac, the 395 & 566 temperament.
In the 11-limit, the 961e val ⟨961 1523 2231 2698 3324] scores the best, which tempers out 102487/102400 and 234375/234256. It prompts us to consider the 961de val ⟨961 1523 2231 2697 3324], which tempers out 3025/3024 and 184877/184320. The patent val ⟨961 1523 2231 2698 3325] tempers out 4000/3993 and 46656/46585.
It works much better as a 2.3.5.7.13.17 subgroup temperament, in which case it tempers out 10985/10976, 1275/1274, 2025/2023 and 4914/4913.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.186 | -0.466 | +0.165 | -0.372 | +0.607 | -0.153 | +0.597 | -0.065 | -0.323 | -0.021 | -0.179 |
Relative (%) | -14.9 | -37.3 | +13.2 | -29.8 | +48.6 | -12.3 | +47.8 | -5.2 | -25.8 | -1.7 | -14.3 | |
Steps (reduced) |
1523 (562) |
2231 (309) |
2698 (776) |
3046 (163) |
3325 (442) |
3556 (673) |
3755 (872) |
3928 (84) |
4082 (238) |
4221 (377) |
4347 (503) |
Subsets and supersets
Since 961 factors into 312, 961edo has 31edo as its subset edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-1523 961⟩ | [⟨961 1523]] | +0.0587 | 0.0587 | 4.70 |
2.3.5 | 32805/32768, [-22 -137 103⟩ | [⟨961 1523 2231]] | +0.1060 | 0.0823 | 6.59 |
2.3.5.7 | 4375/4374, 32805/32768, [15 9 14 -22⟩ | [⟨961 1523 2231 2698]] | +0.0648 | 0.1008 | 8.01 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 399\961 | 498.231 | 4/3 | Pontiac |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct