509edo: Difference between revisions
ArrowHead294 (talk | contribs) m Partial undo |
m changed EDO intro to ED intro |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
509edo has a sharp tendency in lower [[harmonic]]s. The 13-limit [[TE tuning|optimal tuning]] of this temperament is consistent to the 15-integer-limit, so one might want to keep the [[octave compression]] tight. | 509edo has a sharp tendency in lower [[harmonic]]s. The [[13-limit]] [[TE tuning|optimal tuning]] of this temperament is consistent to the 15-integer-limit, so one might want to keep the [[octave compression]] tight. | ||
As an equal temperament, it [[tempering out|tempers out]] 1600000/1594323 ([[amity comma]]) in the 5-limit; [[2401/2400]] and 29360128/29296875 in the 7-limit; and [[3025/3024]], [[5632/5625]], [[41503/41472]], 42592/42525, 151263/151250, 172032/171875, 180224/180075, 322102/321489, 422576/421875, 456533/455625, and [[1953125/1948617]] in the 11-limit. It provides the [[optimal patent val]] for [[petrtri]], the 2.11/5.13/5 subgroup temperament tempering out [[2200/2197]]. | |||
=== Odd harmonics === | === Odd harmonics === | ||
Line 28: | Line 28: | ||
| {{monzo| 807 -509 }} | | {{monzo| 807 -509 }} | ||
| {{mapping| 509 807 }} | | {{mapping| 509 807 }} | ||
| | | −0.1890 | ||
| 0.1889 | | 0.1889 | ||
| 8.01 | | 8.01 | ||
Line 35: | Line 35: | ||
| {{monzo| 9 -13 5 }}, {{monzo| 93 -3 -38 }} | | {{monzo| 9 -13 5 }}, {{monzo| 93 -3 -38 }} | ||
| {{mapping| 509 807 1182 }} | | {{mapping| 509 807 1182 }} | ||
| | | −0.1729 | ||
| 0.1559 | | 0.1559 | ||
| 6.61 | | 6.61 | ||
Line 42: | Line 42: | ||
| 2401/2400, 1600000/1594323, 29360128/29296875 | | 2401/2400, 1600000/1594323, 29360128/29296875 | ||
| {{mapping| 509 807 1182 1429 }} | | {{mapping| 509 807 1182 1429 }} | ||
| | | −0.1415 | ||
| 0.1456 | | 0.1456 | ||
| 6.18 | | 6.18 | ||
Line 49: | Line 49: | ||
| 2401/2400, 3025/3024, 5632/5625, 1600000/1594323 | | 2401/2400, 3025/3024, 5632/5625, 1600000/1594323 | ||
| {{mapping| 509 807 1182 1429 1761 }} | | {{mapping| 509 807 1182 1429 1761 }} | ||
| | | −0.1335 | ||
| 0.1312 | | 0.1312 | ||
| 5.57 | | 5.57 | ||
Line 56: | Line 56: | ||
| 2080/2079, 2200/2197, 2401/2400, 3025/3024, 5632/5625 | | 2080/2079, 2200/2197, 2401/2400, 3025/3024, 5632/5625 | ||
| {{mapping| 509 807 1182 1429 1761 1884 }} | | {{mapping| 509 807 1182 1429 1761 1884 }} | ||
| | | −0.1618 | ||
| 0.1354 | | 0.1354 | ||
| 5.74 | | 5.74 | ||
Line 63: | Line 63: | ||
| 1225/1224, 2080/2079, 2200/2197, 2401/2400, 2431/2430, 4914/4913 | | 1225/1224, 2080/2079, 2200/2197, 2401/2400, 2431/2430, 4914/4913 | ||
| {{mapping| 509 807 1182 1429 1761 1884 2081 }} | | {{mapping| 509 807 1182 1429 1761 1884 2081 }} | ||
| | | −0.1784 | ||
| 0.1318 | | 0.1318 | ||
| 5.59 | | 5.59 | ||
Line 102: | Line 102: | ||
| [[Amity]] | | [[Amity]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Music == | == Music == |
Latest revision as of 06:17, 21 February 2025
← 508edo | 509edo | 510edo → |
509 equal divisions of the octave (abbreviated 509edo or 509ed2), also called 509-tone equal temperament (509tet) or 509 equal temperament (509et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 509 equal parts of about 2.36 ¢ each. Each step represents a frequency ratio of 21/509, or the 509th root of 2.
Theory
509edo has a sharp tendency in lower harmonics. The 13-limit optimal tuning of this temperament is consistent to the 15-integer-limit, so one might want to keep the octave compression tight.
As an equal temperament, it tempers out 1600000/1594323 (amity comma) in the 5-limit; 2401/2400 and 29360128/29296875 in the 7-limit; and 3025/3024, 5632/5625, 41503/41472, 42592/42525, 151263/151250, 172032/171875, 180224/180075, 322102/321489, 422576/421875, 456533/455625, and 1953125/1948617 in the 11-limit. It provides the optimal patent val for petrtri, the 2.11/5.13/5 subgroup temperament tempering out 2200/2197.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.60 | +0.33 | +0.13 | -1.16 | +0.35 | +1.12 | +0.93 | +1.13 | -0.46 | +0.73 | -1.16 |
Relative (%) | +25.4 | +13.9 | +5.6 | -49.2 | +14.9 | +47.6 | +39.3 | +48.1 | -19.5 | +31.0 | -49.3 | |
Steps (reduced) |
807 (298) |
1182 (164) |
1429 (411) |
1613 (86) |
1761 (234) |
1884 (357) |
1989 (462) |
2081 (45) |
2162 (126) |
2236 (200) |
2302 (266) |
Subsets and supersets
509edo is the 97th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [807 -509⟩ | [⟨509 807]] | −0.1890 | 0.1889 | 8.01 |
2.3.5 | [9 -13 5⟩, [93 -3 -38⟩ | [⟨509 807 1182]] | −0.1729 | 0.1559 | 6.61 |
2.3.5.7 | 2401/2400, 1600000/1594323, 29360128/29296875 | [⟨509 807 1182 1429]] | −0.1415 | 0.1456 | 6.18 |
2.3.5.7.11 | 2401/2400, 3025/3024, 5632/5625, 1600000/1594323 | [⟨509 807 1182 1429 1761]] | −0.1335 | 0.1312 | 5.57 |
2.3.5.7.11.13 | 2080/2079, 2200/2197, 2401/2400, 3025/3024, 5632/5625 | [⟨509 807 1182 1429 1761 1884]] | −0.1618 | 0.1354 | 5.74 |
2.3.5.7.11.13.17 | 1225/1224, 2080/2079, 2200/2197, 2401/2400, 2431/2430, 4914/4913 | [⟨509 807 1182 1429 1761 1884 2081]] | −0.1784 | 0.1318 | 5.59 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 18\509 | 42.44 | 40/39 | Humorous |
1 | 36\509 | 84.87 | 21/20 | Amicable |
1 | 115\509 | 271.12 | 1024/875 | Quasiorwell |
1 | 144\509 | 339.49 | 243/200 | Amity |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct