251edo: Difference between revisions
Created page with "'''251edo''' is the equal division of the octave into 251 parts of 4.7809 cents each. It tempers out 1600000/1594323 (amity comma) and 562949953421312/556182861328..." Tags: Mobile edit Mobile web edit |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(13 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
251et [[tempering out|tempers out]] 1600000/1594323 ([[amity comma]]) and {{monzo| 49 -6 -17 }} ([[maquila comma]]) in the 5-limit; [[4375/4374]], [[5120/5103]], and 40500000/40353607 in the 7-limit, [[support]]ing [[amity]], [[supermajor]], and [[acrokleismic]]. | |||
[[ | Using the [[patent val]] {{val| 251 398 583 705 '''868''' }}, it tempers out 1331/1323, 1375/1372, 16896/16807, and 24057/24010 in the 11-limit; [[352/351]], [[676/675]], [[847/845]], and [[1573/1568]] in the 13-limit. | ||
[[Category: | |||
Using the 251e val {{val| 251 398 583 705 '''869''' }}, it tempers out [[540/539]], [[5632/5625]], [[6250/6237]], and 12005/11979 in the 11-limit; [[364/363]], [[676/675]], [[1716/1715]], and 3584/3575 in the 13-limit. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|251}} | |||
=== Subsets and supersets === | |||
251edo is the 54th [[prime edo]]. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| 398 -251 }} | |||
| {{mapping| 251 398 }} | |||
| −0.2630 | |||
| 0.2630 | |||
| 5.50 | |||
|- | |||
| 2.3.5 | |||
| {{monzo| 9 -13 5 }}, {{monzo| 49 -6 -17 }} | |||
| {{mapping| 251 398 583 }} | |||
| −0.3099 | |||
| 0.2247 | |||
| 4.70 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 5120/5103, 40500000/40353607 | |||
| {{mapping| 251 398 583 705 }} | |||
| −0.3830 | |||
| 0.2322 | |||
| 4.86 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 66\251 | |||
| 315.54 | |||
| 6/5 | |||
| [[Acrokleismic]] | |||
|- | |||
| 1 | |||
| 71\251 | |||
| 339.44 | |||
| 243/200 | |||
| [[Amity]] | |||
|- | |||
| 1 | |||
| 91\251 | |||
| 435.06 | |||
| 9/7 | |||
| [[Supermajor]] | |||
|- | |||
| 1 | |||
| 96\251 | |||
| 458.96 | |||
| 125/96 | |||
| [[Majvam]] | |||
|- | |||
| 1 | |||
| 112\251 | |||
| 535.46 | |||
| 512/375 | |||
| [[Maquila]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Francium]] | |||
* "hope in dark times" from ''hope in dark times'' (2024) – [https://open.spotify.com/track/1zSiYXz46ugWAmqySaEN2A Spotify] | [https://francium223.bandcamp.com/track/hope-in-dark-times Bandcamp] | [https://www.youtube.com/watch?v=yHl3oku_NmY YouTube] | |||
[[Category:Listen]] |
Latest revision as of 19:28, 20 February 2025
← 250edo | 251edo | 252edo → |
251 equal divisions of the octave (abbreviated 251edo or 251ed2), also called 251-tone equal temperament (251tet) or 251 equal temperament (251et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 251 equal parts of about 4.78 ¢ each. Each step represents a frequency ratio of 21/251, or the 251st root of 2.
Theory
251et tempers out 1600000/1594323 (amity comma) and [49 -6 -17⟩ (maquila comma) in the 5-limit; 4375/4374, 5120/5103, and 40500000/40353607 in the 7-limit, supporting amity, supermajor, and acrokleismic.
Using the patent val ⟨251 398 583 705 868], it tempers out 1331/1323, 1375/1372, 16896/16807, and 24057/24010 in the 11-limit; 352/351, 676/675, 847/845, and 1573/1568 in the 13-limit.
Using the 251e val ⟨251 398 583 705 869], it tempers out 540/539, 5632/5625, 6250/6237, and 12005/11979 in the 11-limit; 364/363, 676/675, 1716/1715, and 3584/3575 in the 13-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.83 | +0.94 | +1.69 | +1.67 | -1.52 | +0.91 | +1.77 | +0.22 | -1.10 | -2.26 | -1.98 |
Relative (%) | +17.4 | +19.6 | +35.4 | +34.9 | -31.7 | +19.0 | +37.0 | +4.7 | -23.0 | -47.2 | -41.4 | |
Steps (reduced) |
398 (147) |
583 (81) |
705 (203) |
796 (43) |
868 (115) |
929 (176) |
981 (228) |
1026 (22) |
1066 (62) |
1102 (98) |
1135 (131) |
Subsets and supersets
251edo is the 54th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [398 -251⟩ | [⟨251 398]] | −0.2630 | 0.2630 | 5.50 |
2.3.5 | [9 -13 5⟩, [49 -6 -17⟩ | [⟨251 398 583]] | −0.3099 | 0.2247 | 4.70 |
2.3.5.7 | 4375/4374, 5120/5103, 40500000/40353607 | [⟨251 398 583 705]] | −0.3830 | 0.2322 | 4.86 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 66\251 | 315.54 | 6/5 | Acrokleismic |
1 | 71\251 | 339.44 | 243/200 | Amity |
1 | 91\251 | 435.06 | 9/7 | Supermajor |
1 | 96\251 | 458.96 | 125/96 | Majvam |
1 | 112\251 | 535.46 | 512/375 | Maquila |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct