328edo: Difference between revisions
Cmloegcmluin (talk | contribs) I've asked for the clutter of pages of different forms for the words defactor and enfactor to be deleted, so now pages that linked to them need to be updated to use the remaining working link |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
328edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[164edo]]. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it | 328edo is [[enfactoring|enfactored]] in the [[5-limit]], with the same tuning as [[164edo]], but the approximation of higher [[harmonic]]s are much improved. It has a sharp tendency, with harmonics 3 through 17 all tuned sharp. The equal temperament [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]]. | ||
328 | === Prime harmonics === | ||
{{Harmonics in equal|328|intervals=prime|columns=11}} | |||
=== | === Subsets and supersets === | ||
{{ | Since 328 factors into {{Factorisation|328}}, 328edo has subset edos {{EDOs| 2, 4, 8, 41, 82, and 164 }}. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 29: | Line 25: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 3136/3125, 589824/588245 | | 2401/2400, 3136/3125, 589824/588245 | ||
| | | {{mapping| 328 520 762 921 }} | ||
| | | −0.298 | ||
| 0.229 | | 0.229 | ||
| 6.27 | | 6.27 | ||
Line 36: | Line 32: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 3136/3125, 9801/9800, 19712/19683 | | 2401/2400, 3136/3125, 9801/9800, 19712/19683 | ||
| | | {{mapping| 328 520 762 921 1135 }} | ||
| | | −0.303 | ||
| 0.205 | | 0.205 | ||
| 5.61 | | 5.61 | ||
Line 43: | Line 39: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 | | 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 | ||
| | | {{mapping| 328 520 762 921 1135 1214 }} | ||
| | | −0.295 | ||
| 0.188 | | 0.188 | ||
| 5.15 | | 5.15 | ||
Line 50: | Line 46: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 | | 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 | ||
| | | {{mapping| 328 520 762 921 1135 1214 1341 }} | ||
| | | −0.293 | ||
| 0.174 | | 0.174 | ||
| 4.77 | | 4.77 | ||
Line 57: | Line 53: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Note: 5-limit temperaments supported by 164et are not listed. | |||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 84: | Line 83: | ||
|- | |- | ||
| 2 | | 2 | ||
| 111\328<br>(53\328) | | 111\328<br />(53\328) | ||
| 406.10<br>(193.90) | | 406.10<br />(193.90) | ||
| 495/392<br>(28/25) | | 495/392<br />(28/25) | ||
| [[Semihemiwürschmidt]] | | [[Semihemiwürschmidt]] | ||
|- | |- | ||
| 8 | | 8 | ||
| 136\328<br>(13\328) | | 136\328<br />(13\328) | ||
| 497.56<br>(47.56) | | 497.56<br />(47.56) | ||
| 4/3<br>(36/35) | | 4/3<br />(36/35) | ||
| [[Twilight]] | | [[Twilight]] | ||
|- | |- | ||
| 41 | | 41 | ||
| 49\328<br>(1\328) | | 49\328<br />(1\328) | ||
| 179.27<br>(3.66) | | 179.27<br />(3.66) | ||
| 567/512<br>(352/351) | | 567/512<br />(352/351) | ||
| [[ | | [[Hemicountercomp]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[Category:Hemiwürschmidt]] | [[Category:Hemiwürschmidt]] | ||
[[Category:Semiporwell]] | [[Category:Semiporwell]] |
Latest revision as of 14:41, 20 February 2025
← 327edo | 328edo | 329edo → |
328 equal divisions of the octave (abbreviated 328edo or 328ed2), also called 328-tone equal temperament (328tet) or 328 equal temperament (328et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 328 equal parts of about 3.66 ¢ each. Each step represents a frequency ratio of 21/328, or the 328th root of 2.
Theory
328edo is enfactored in the 5-limit, with the same tuning as 164edo, but the approximation of higher harmonics are much improved. It has a sharp tendency, with harmonics 3 through 17 all tuned sharp. The equal temperament tempers out 2401/2400, 3136/3125, and 6144/6125 in the 7-limit, 9801/9800, 16384/16335 and 19712/19683 in the 11-limit, 676/675, 1001/1000, 1716/1715 and 2080/2079 in the 13-limit, 936/935, 1156/1155 and 2601/2600 in the 17-limit, so that it supports würschmidt and hemiwürschmidt, and provides the optimal patent val for 7-limit hemiwürschmidt, 11- and 13-limit semihemiwür, and 13-limit semiporwell.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.48 | +1.49 | +0.69 | +1.12 | +0.94 | +1.14 | -1.17 | +0.99 | -1.53 | +0.09 |
Relative (%) | +0.0 | +13.2 | +40.8 | +18.8 | +30.6 | +25.6 | +31.2 | -32.0 | +27.2 | -41.8 | +2.4 | |
Steps (reduced) |
328 (0) |
520 (192) |
762 (106) |
921 (265) |
1135 (151) |
1214 (230) |
1341 (29) |
1393 (81) |
1484 (172) |
1593 (281) |
1625 (313) |
Subsets and supersets
Since 328 factors into 23 × 41, 328edo has subset edos 2, 4, 8, 41, 82, and 164.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7 | 2401/2400, 3136/3125, 589824/588245 | [⟨328 520 762 921]] | −0.298 | 0.229 | 6.27 |
2.3.5.7.11 | 2401/2400, 3136/3125, 9801/9800, 19712/19683 | [⟨328 520 762 921 1135]] | −0.303 | 0.205 | 5.61 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 | [⟨328 520 762 921 1135 1214]] | −0.295 | 0.188 | 5.15 |
2.3.5.7.11.13.17 | 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 | [⟨328 520 762 921 1135 1214 1341]] | −0.293 | 0.174 | 4.77 |
Rank-2 temperaments
Note: 5-limit temperaments supported by 164et are not listed.
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 53\328 | 193.90 | 28/25 | Hemiwürschmidt |
1 | 117\328 | 428.05 | 2800/2187 | Osiris |
2 | 17\328 | 62.20 | 28/27 | Eagle |
2 | 111\328 (53\328) |
406.10 (193.90) |
495/392 (28/25) |
Semihemiwürschmidt |
8 | 136\328 (13\328) |
497.56 (47.56) |
4/3 (36/35) |
Twilight |
41 | 49\328 (1\328) |
179.27 (3.66) |
567/512 (352/351) |
Hemicountercomp |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct