|
|
(10 intermediate revisions by 8 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-09-09 13:12:40 UTC</tt>.<br>
| |
| : The original revision id was <tt>449703270</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**271 EDO** divides the [[octave]] into 271 [[equal]] intervals, each 4.428 [[cent]]s in size. It tempers out 4000/3969 and 65625/65536 in the 7-limit, 896/891 and 1375/1372 in the 11-limit, and 352/351, 364/363, 676/675, 1575/1573 and 2200/2197 in the 13-limit. It is an optimal patent val by some measures for the 13-limit pentacircle temperament, tempering out 352/351 and 364/363 on the 2.11/7.13/7 subgroup of the 13-limit.
| |
|
| |
|
| =Scales= | | == Theory == |
| [[pepperoni7]] | | 271edo is the highest edo where the [[3/2|perfect fifth]] has greater absolute error than [[12edo]]. It is in[[consistent]] in the [[5-odd-limit]]. Using the [[patent val]] nonetheless, the equal temperament [[tempering out|tempers out]] [[4000/3969]] and [[65625/65536]] in the 7-limit, [[896/891]] and 1375/1372 in the 11-limit, and [[352/351]], [[364/363]], [[676/675]], [[1575/1573]] and [[2200/2197]] in the 13-limit. It is the [[optimal patent val]] for the [[pepperoni]] temperament, tempering out 352/351 and 364/363 on the 2.3.11/7.13/7 [[subgroup]] of the 13-limit. |
| [[pepperoni12]] | | |
| [[cantonpenta]]</pre></div> | | === Odd harmonics === |
| <h4>Original HTML content:</h4>
| | {{Harmonics in equal|271}} |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>271edo</title></head><body><strong>271 EDO</strong> divides the <a class="wiki_link" href="/octave">octave</a> into 271 <a class="wiki_link" href="/equal">equal</a> intervals, each 4.428 <a class="wiki_link" href="/cent">cent</a>s in size. It tempers out 4000/3969 and 65625/65536 in the 7-limit, 896/891 and 1375/1372 in the 11-limit, and 352/351, 364/363, 676/675, 1575/1573 and 2200/2197 in the 13-limit. It is an optimal patent val by some measures for the 13-limit pentacircle temperament, tempering out 352/351 and 364/363 on the 2.11/7.13/7 subgroup of the 13-limit.<br />
| | |
| <br />
| | === Subsets and supersets === |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:0 -->Scales</h1>
| | 271edo is the 58th [[prime edo]]. |
| <a class="wiki_link" href="/pepperoni7">pepperoni7</a><br />
| | |
| <a class="wiki_link" href="/pepperoni12">pepperoni12</a><br />
| | == Scales == |
| <a class="wiki_link" href="/cantonpenta">cantonpenta</a></body></html></pre></div>
| | * [[Pepperoni7]] |
| | * [[Pepperoni12]] |
| | * [[Cantonpenta]] |
| | |
| | [[Category:Pepperoni]] |
Prime factorization
|
271 (prime)
|
Step size
|
4.42804 ¢
|
Fifth
|
159\271 (704.059 ¢)
|
Semitones (A1:m2)
|
29:18 (128.4 ¢ : 79.7 ¢)
|
Dual sharp fifth
|
159\271 (704.059 ¢)
|
Dual flat fifth
|
158\271 (699.631 ¢)
|
Dual major 2nd
|
46\271 (203.69 ¢)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
271 equal divisions of the octave (abbreviated 271edo or 271ed2), also called 271-tone equal temperament (271tet) or 271 equal temperament (271et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 271 equal parts of about 4.43 ¢ each. Each step represents a frequency ratio of 21/271, or the 271st root of 2.
Theory
271edo is the highest edo where the perfect fifth has greater absolute error than 12edo. It is inconsistent in the 5-odd-limit. Using the patent val nonetheless, the equal temperament tempers out 4000/3969 and 65625/65536 in the 7-limit, 896/891 and 1375/1372 in the 11-limit, and 352/351, 364/363, 676/675, 1575/1573 and 2200/2197 in the 13-limit. It is the optimal patent val for the pepperoni temperament, tempering out 352/351 and 364/363 on the 2.3.11/7.13/7 subgroup of the 13-limit.
Odd harmonics
Approximation of odd harmonics in 271edo
Harmonic
|
3
|
5
|
7
|
9
|
11
|
13
|
15
|
17
|
19
|
21
|
23
|
Error
|
Absolute (¢)
|
+2.10
|
-1.07
|
+0.92
|
-0.22
|
+2.19
|
+0.80
|
+1.03
|
+1.32
|
-0.83
|
-1.41
|
+0.51
|
Relative (%)
|
+47.5
|
-24.3
|
+20.7
|
-5.0
|
+49.4
|
+18.1
|
+23.3
|
+29.8
|
-18.8
|
-31.8
|
+11.5
|
Steps (reduced)
|
430 (159)
|
629 (87)
|
761 (219)
|
859 (46)
|
938 (125)
|
1003 (190)
|
1059 (246)
|
1108 (24)
|
1151 (67)
|
1190 (106)
|
1226 (142)
|
Subsets and supersets
271edo is the 58th prime edo.
Scales