32edf: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tags: Mobile edit Mobile web edit |
m Cleanup |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
32edf corresponds to 54.7044[[edo]], similar to every seventh step of [[383edo]]. It is related to the [[regular temperament]] which [[tempering out|tempers out]] {{monzo| 127 -127 32 }} in the [[5-limit]], which is supported by {{EDOs| 164-, 383-, 547-, 711-, 875-, and 1258edo }}. | |||
Lookalikes: [[55edo]], [[87edt]] | Lookalikes: [[55edo]], [[87edt]] | ||
==Intervals== | === Harmonics === | ||
{| class="wikitable" | {{Harmonics in equal|32|3|2}} | ||
{{Harmonics in equal|32|3|2|start=12|collapsed=1}} | |||
== Intervals == | |||
{| class="wikitable mw-collapsible" | |||
|+ Intervals of 32edf | |||
|- | |- | ||
! | degree | ! | degree | ||
Line 11: | Line 20: | ||
! | comments | ! | comments | ||
|- | |- | ||
| | | | colspan="2"| 0 | ||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 28: | Line 36: | ||
| | 3 | | | 3 | ||
| | 65.8083 | | | 65.8083 | ||
| | [[27/26]] | | | [[27/26]], 28/27 | ||
| | | | | | ||
|- | |- | ||
Line 38: | Line 46: | ||
| | 5 | | | 5 | ||
| | 109.6805 | | | 109.6805 | ||
| | 49/46 | | | 49/46, 16/15 | ||
| | | | | | ||
|- | |- | ||
Line 48: | Line 56: | ||
| | 7 | | | 7 | ||
| | 153.5527 | | | 153.5527 | ||
| | 59/54 | | | 59/54, 18/11 | ||
| | | | | | ||
|- | |- | ||
Line 67: | Line 75: | ||
|- | |- | ||
| | 11 | | | 11 | ||
| | 241. | | | 241.297 | ||
| | (23/20) | | | (23/20) | ||
| | | | | | ||
Line 73: | Line 81: | ||
| | 12 | | | 12 | ||
| | 263.2331 | | | 263.2331 | ||
| | | | |7/6 | ||
| | | | | | ||
|- | |- | ||
Line 108: | Line 116: | ||
| | 19 | | | 19 | ||
| | 416.7858 | | | 416.7858 | ||
| | | | |14/11 | ||
| | | | | | ||
|- | |- | ||
| | 20 | | | 20 | ||
| | 438.7219 | | | 438.7219 | ||
| | | | |9/7 | ||
| | | | | | ||
|- | |- | ||
Line 129: | Line 137: | ||
| | 504.5302 | | | 504.5302 | ||
| | 87/65 | | | 87/65 | ||
| | | | |pseudo-4/3 | ||
|- | |- | ||
| | 24 | | | 24 | ||
Line 153: | Line 161: | ||
| | 28 | | | 28 | ||
| | 614.2106 | | | 614.2106 | ||
| | | | |10/7 | ||
| | | | | | ||
|- | |- | ||
| | 29 | | | 29 | ||
| | 636.1467 | | | 636.1467 | ||
| | | | |13/9 | ||
| | | | | | ||
|- | |- | ||
Line 175: | Line 183: | ||
| | '''exact [[3/2]]''' | | | '''exact [[3/2]]''' | ||
| | just perfect fifth | | | just perfect fifth | ||
|- | |||
|33 | |||
|723.8911 | |||
|243/160 | |||
| | |||
|- | |||
|34 | |||
|745.8372 | |||
|20/13 | |||
| | |||
|- | |||
|35 | |||
|766.7633 | |||
|81/52, 14/9 | |||
| | |||
|- | |||
|36 | |||
|790.6994 | |||
| | |||
| | |||
|- | |||
|37 | |||
|811.6355 | |||
|147/92, 8/5 | |||
| | |||
|- | |||
|38 | |||
|833.5716 | |||
|123/76 | |||
| | |||
|- | |||
|39 | |||
|855.5077 | |||
|59/36, 18/11 | |||
| | |||
|- | |||
|40 | |||
|877.4438 | |||
| | |||
| | |||
|- | |||
|41 | |||
|899.3798 | |||
|195/116 | |||
| | |||
|- | |||
|42 | |||
|922.3159 | |||
|63/37 | |||
| | |||
|- | |||
|43 | |||
|943.252 | |||
|69/40 | |||
| | |||
|- | |||
|44 | |||
|965.1881 | |||
|7/4 | |||
| | |||
|- | |||
|45 | |||
|987.1242 | |||
| | |||
| | |||
|- | |||
|46 | |||
|1009.0603 | |||
|351/196 | |||
| | |||
|- | |||
|47 | |||
|1030.9964 | |||
|78/43 | |||
| | |||
|- | |||
|48 | |||
|1052.9325 | |||
|90/49, 147/80 | |||
| | |||
|- | |||
|49 | |||
|1076.8686 | |||
|387/208 | |||
| | |||
|- | |||
|50 | |||
|1096.847 | |||
|147/78 | |||
| | |||
|- | |||
|51 | |||
|1118.7408 | |||
|21/11 | |||
| | |||
|- | |||
|52 | |||
|1140.6769 | |||
|27/14 | |||
| | |||
|- | |||
|53 | |||
|1162.613 | |||
|45/23 | |||
| | |||
|- | |||
|54 | |||
|1184.5451 | |||
|111/56 | |||
| | |||
|- | |||
|55 | |||
|1206.4852 | |||
|261/130 | |||
|pseudo-2/1 | |||
|- | |||
|56 | |||
|1228.4213 | |||
|61/30 | |||
| | |||
|- | |||
|57 | |||
|1250.3575 | |||
|243/118 | |||
| | |||
|- | |||
|58 | |||
|1272.2934 | |||
|171/82 | |||
| | |||
|- | |||
|59 | |||
|1294.2395 | |||
|207/98 | |||
| | |||
|- | |||
|60 | |||
|1316.1656 | |||
|15/7 | |||
| | |||
|- | |||
|61 | |||
|1338.1017 | |||
|13/6 | |||
| | |||
|- | |||
|62 | |||
|1360.0378 | |||
|351/160 | |||
| | |||
|- | |||
|63 | |||
|1381.9739 | |||
|20/9 | |||
| | |||
|- | |||
|64 | |||
|1403.91 | |||
|'''exact''' 9/4 | |||
| | |||
|} | |} | ||
{{Todo|cleanup|expand}} | |||
Latest revision as of 17:08, 17 January 2025
← 31edf | 32edf | 33edf → |
32 equal divisions of the perfect fifth (abbreviated 32edf or 32ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 32 equal parts of about 21.9 ¢ each. Each step represents a frequency ratio of (3/2)1/32, or the 32nd root of 3/2.
Theory
32edf corresponds to 54.7044edo, similar to every seventh step of 383edo. It is related to the regular temperament which tempers out [127 -127 32⟩ in the 5-limit, which is supported by 164-, 383-, 547-, 711-, 875-, and 1258edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.49 | +6.49 | -8.97 | -0.43 | -8.97 | +9.33 | -2.48 | -8.97 | +6.06 | -5.40 | -2.48 |
Relative (%) | +29.6 | +29.6 | -40.9 | -2.0 | -40.9 | +42.5 | -11.3 | -40.9 | +27.6 | -24.6 | -11.3 | |
Steps (reduced) |
55 (23) |
87 (23) |
109 (13) |
127 (31) |
141 (13) |
154 (26) |
164 (4) |
173 (13) |
182 (22) |
189 (29) |
196 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.44 | -6.12 | +6.06 | +4.00 | +8.73 | -2.48 | -8.34 | -9.40 | -6.12 | +1.09 | -10.06 |
Relative (%) | -43.0 | -27.9 | +27.6 | +18.3 | +39.8 | -11.3 | -38.0 | -42.8 | -27.9 | +5.0 | -45.9 | |
Steps (reduced) |
202 (10) |
208 (16) |
214 (22) |
219 (27) |
224 (0) |
228 (4) |
232 (8) |
236 (12) |
240 (16) |
244 (20) |
247 (23) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 21.9361 | 81/80 | |
2 | 43.8722 | 40/39 | |
3 | 65.8083 | 27/26, 28/27 | |
4 | 87.7444 | ||
5 | 109.6805 | 49/46, 16/15 | |
6 | 131.6166 | 41/38 | |
7 | 153.5527 | 59/54, 18/11 | |
8 | 175.4888 | ||
9 | 197.4248 | 65/58 | |
10 | 219.3609 | 42/37 | |
11 | 241.297 | (23/20) | |
12 | 263.2331 | 7/6 | |
13 | 285.1692 | ||
14 | 307.1053 | 117/98 | |
15 | 329.0414 | 52/43 | |
16 | 350.9775 | 60/49, 49/40 | |
17 | 372.9136 | 129/104 | |
18 | 394.8497 | 49/39 | |
19 | 416.7858 | 14/11 | |
20 | 438.7219 | 9/7 | |
21 | 460.6580 | (30/23) | |
22 | 482.5941 | 37/28 | |
23 | 504.5302 | 87/65 | pseudo-4/3 |
24 | 526.4663 | 61/45 | |
25 | 548.4023 | 81/59 | |
26 | 570.3384 | 57/41 | |
27 | 592.2745 | 69/49 | |
28 | 614.2106 | 10/7 | |
29 | 636.1467 | 13/9 | |
30 | 658.0828 | 117/80 | |
31 | 680.0189 | 40/27 | |
32 | 701.9550 | exact 3/2 | just perfect fifth |
33 | 723.8911 | 243/160 | |
34 | 745.8372 | 20/13 | |
35 | 766.7633 | 81/52, 14/9 | |
36 | 790.6994 | ||
37 | 811.6355 | 147/92, 8/5 | |
38 | 833.5716 | 123/76 | |
39 | 855.5077 | 59/36, 18/11 | |
40 | 877.4438 | ||
41 | 899.3798 | 195/116 | |
42 | 922.3159 | 63/37 | |
43 | 943.252 | 69/40 | |
44 | 965.1881 | 7/4 | |
45 | 987.1242 | ||
46 | 1009.0603 | 351/196 | |
47 | 1030.9964 | 78/43 | |
48 | 1052.9325 | 90/49, 147/80 | |
49 | 1076.8686 | 387/208 | |
50 | 1096.847 | 147/78 | |
51 | 1118.7408 | 21/11 | |
52 | 1140.6769 | 27/14 | |
53 | 1162.613 | 45/23 | |
54 | 1184.5451 | 111/56 | |
55 | 1206.4852 | 261/130 | pseudo-2/1 |
56 | 1228.4213 | 61/30 | |
57 | 1250.3575 | 243/118 | |
58 | 1272.2934 | 171/82 | |
59 | 1294.2395 | 207/98 | |
60 | 1316.1656 | 15/7 | |
61 | 1338.1017 | 13/6 | |
62 | 1360.0378 | 351/160 | |
63 | 1381.9739 | 20/9 | |
64 | 1403.91 | exact 9/4 |