32edf: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''32EDF''' is the equal division of the just perfect fifth into 32 parts of 21.9361 cents each, corresponding to 54.7044 edo (similar to every seventh st..." Tags: Mobile edit Mobile web edit |
m Cleanup |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
32edf corresponds to 54.7044[[edo]], similar to every seventh step of [[383edo]]. It is related to the [[regular temperament]] which [[tempering out|tempers out]] {{monzo| 127 -127 32 }} in the [[5-limit]], which is supported by {{EDOs| 164-, 383-, 547-, 711-, 875-, and 1258edo }}. | |||
Lookalikes: [[55edo]], [[87edt]] | Lookalikes: [[55edo]], [[87edt]] | ||
==Intervals== | === Harmonics === | ||
{| class="wikitable" | {{Harmonics in equal|32|3|2}} | ||
{{Harmonics in equal|32|3|2|start=12|collapsed=1}} | |||
== Intervals == | |||
{| class="wikitable mw-collapsible" | |||
|+ Intervals of 32edf | |||
|- | |- | ||
! | degree | ! | degree | ||
Line 11: | Line 20: | ||
! | comments | ! | comments | ||
|- | |- | ||
| | | | colspan="2"| 0 | ||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 28: | Line 36: | ||
| | 3 | | | 3 | ||
| | 65.8083 | | | 65.8083 | ||
| | [[27/26]] | | | [[27/26]], 28/27 | ||
| | | | | | ||
|- | |- | ||
Line 38: | Line 46: | ||
| | 5 | | | 5 | ||
| | 109.6805 | | | 109.6805 | ||
| | 49/46 | | | 49/46, 16/15 | ||
| | | | | | ||
|- | |- | ||
| | 6 | | | 6 | ||
| | 131.6166 | | | 131.6166 | ||
| | | | | 41/38 | ||
| | | | | | ||
|- | |- | ||
| | 7 | | | 7 | ||
| | 153.5527 | | | 153.5527 | ||
| | | | | 59/54, 18/11 | ||
| | | | | | ||
|- | |- | ||
Line 58: | Line 66: | ||
| | 9 | | | 9 | ||
| | 197.4248 | | | 197.4248 | ||
| | | | | 65/58 | ||
| | | | | | ||
|- | |- | ||
Line 67: | Line 75: | ||
|- | |- | ||
| | 11 | | | 11 | ||
| | 241. | | | 241.297 | ||
| | | | | (23/20) | ||
| | | | | | ||
|- | |- | ||
| | 12 | | | 12 | ||
| | 263.2331 | | | 263.2331 | ||
| | | | |7/6 | ||
| | | | | | ||
|- | |- | ||
Line 83: | Line 91: | ||
| | 14 | | | 14 | ||
| | 307.1053 | | | 307.1053 | ||
| | | | | 117/98 | ||
| | | | | | ||
|- | |- | ||
Line 98: | Line 106: | ||
| | 17 | | | 17 | ||
| | 372.9136 | | | 372.9136 | ||
| | | | | 129/104 | ||
| | | | | | ||
|- | |- | ||
Line 108: | Line 116: | ||
| | 19 | | | 19 | ||
| | 416.7858 | | | 416.7858 | ||
| | | | |14/11 | ||
| | | | | | ||
|- | |- | ||
| | 20 | | | 20 | ||
| | 438.7219 | | | 438.7219 | ||
| | | | |9/7 | ||
| | | | | | ||
|- | |- | ||
| | 21 | | | 21 | ||
| | 460.6580 | | | 460.6580 | ||
| | | | | (30/23) | ||
| | | | | | ||
|- | |- | ||
Line 128: | Line 136: | ||
| | 23 | | | 23 | ||
| | 504.5302 | | | 504.5302 | ||
| | | | | 87/65 | ||
| | | | |pseudo-4/3 | ||
|- | |- | ||
| | 24 | | | 24 | ||
| | 526.4663 | | | 526.4663 | ||
| | | | | 61/45 | ||
| | | | | | ||
|- | |- | ||
| | 25 | | | 25 | ||
| | 548.4023 | | | 548.4023 | ||
| | | | | 81/59 | ||
| | | | | | ||
|- | |- | ||
| | 26 | | | 26 | ||
| | 570.3384 | | | 570.3384 | ||
| | | | | 57/41 | ||
| | | | | | ||
|- | |- | ||
| | 27 | | | 27 | ||
| | 592.2745 | | | 592.2745 | ||
| | | | | 69/49 | ||
| | | | | | ||
|- | |- | ||
| | 28 | | | 28 | ||
| | 614.2106 | | | 614.2106 | ||
| | | | |10/7 | ||
| | | | | | ||
|- | |- | ||
| | 29 | | | 29 | ||
| | 636.1467 | | | 636.1467 | ||
| | | | |13/9 | ||
| | | | | | ||
|- | |- | ||
Line 175: | Line 183: | ||
| | '''exact [[3/2]]''' | | | '''exact [[3/2]]''' | ||
| | just perfect fifth | | | just perfect fifth | ||
|- | |||
|33 | |||
|723.8911 | |||
|243/160 | |||
| | |||
|- | |||
|34 | |||
|745.8372 | |||
|20/13 | |||
| | |||
|- | |||
|35 | |||
|766.7633 | |||
|81/52, 14/9 | |||
| | |||
|- | |||
|36 | |||
|790.6994 | |||
| | |||
| | |||
|- | |||
|37 | |||
|811.6355 | |||
|147/92, 8/5 | |||
| | |||
|- | |||
|38 | |||
|833.5716 | |||
|123/76 | |||
| | |||
|- | |||
|39 | |||
|855.5077 | |||
|59/36, 18/11 | |||
| | |||
|- | |||
|40 | |||
|877.4438 | |||
| | |||
| | |||
|- | |||
|41 | |||
|899.3798 | |||
|195/116 | |||
| | |||
|- | |||
|42 | |||
|922.3159 | |||
|63/37 | |||
| | |||
|- | |||
|43 | |||
|943.252 | |||
|69/40 | |||
| | |||
|- | |||
|44 | |||
|965.1881 | |||
|7/4 | |||
| | |||
|- | |||
|45 | |||
|987.1242 | |||
| | |||
| | |||
|- | |||
|46 | |||
|1009.0603 | |||
|351/196 | |||
| | |||
|- | |||
|47 | |||
|1030.9964 | |||
|78/43 | |||
| | |||
|- | |||
|48 | |||
|1052.9325 | |||
|90/49, 147/80 | |||
| | |||
|- | |||
|49 | |||
|1076.8686 | |||
|387/208 | |||
| | |||
|- | |||
|50 | |||
|1096.847 | |||
|147/78 | |||
| | |||
|- | |||
|51 | |||
|1118.7408 | |||
|21/11 | |||
| | |||
|- | |||
|52 | |||
|1140.6769 | |||
|27/14 | |||
| | |||
|- | |||
|53 | |||
|1162.613 | |||
|45/23 | |||
| | |||
|- | |||
|54 | |||
|1184.5451 | |||
|111/56 | |||
| | |||
|- | |||
|55 | |||
|1206.4852 | |||
|261/130 | |||
|pseudo-2/1 | |||
|- | |||
|56 | |||
|1228.4213 | |||
|61/30 | |||
| | |||
|- | |||
|57 | |||
|1250.3575 | |||
|243/118 | |||
| | |||
|- | |||
|58 | |||
|1272.2934 | |||
|171/82 | |||
| | |||
|- | |||
|59 | |||
|1294.2395 | |||
|207/98 | |||
| | |||
|- | |||
|60 | |||
|1316.1656 | |||
|15/7 | |||
| | |||
|- | |||
|61 | |||
|1338.1017 | |||
|13/6 | |||
| | |||
|- | |||
|62 | |||
|1360.0378 | |||
|351/160 | |||
| | |||
|- | |||
|63 | |||
|1381.9739 | |||
|20/9 | |||
| | |||
|- | |||
|64 | |||
|1403.91 | |||
|'''exact''' 9/4 | |||
| | |||
|} | |} | ||
{{Todo|cleanup|expand}} | |||
Latest revision as of 17:08, 17 January 2025
← 31edf | 32edf | 33edf → |
32 equal divisions of the perfect fifth (abbreviated 32edf or 32ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 32 equal parts of about 21.9 ¢ each. Each step represents a frequency ratio of (3/2)1/32, or the 32nd root of 3/2.
Theory
32edf corresponds to 54.7044edo, similar to every seventh step of 383edo. It is related to the regular temperament which tempers out [127 -127 32⟩ in the 5-limit, which is supported by 164-, 383-, 547-, 711-, 875-, and 1258edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.49 | +6.49 | -8.97 | -0.43 | -8.97 | +9.33 | -2.48 | -8.97 | +6.06 | -5.40 | -2.48 |
Relative (%) | +29.6 | +29.6 | -40.9 | -2.0 | -40.9 | +42.5 | -11.3 | -40.9 | +27.6 | -24.6 | -11.3 | |
Steps (reduced) |
55 (23) |
87 (23) |
109 (13) |
127 (31) |
141 (13) |
154 (26) |
164 (4) |
173 (13) |
182 (22) |
189 (29) |
196 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.44 | -6.12 | +6.06 | +4.00 | +8.73 | -2.48 | -8.34 | -9.40 | -6.12 | +1.09 | -10.06 |
Relative (%) | -43.0 | -27.9 | +27.6 | +18.3 | +39.8 | -11.3 | -38.0 | -42.8 | -27.9 | +5.0 | -45.9 | |
Steps (reduced) |
202 (10) |
208 (16) |
214 (22) |
219 (27) |
224 (0) |
228 (4) |
232 (8) |
236 (12) |
240 (16) |
244 (20) |
247 (23) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 21.9361 | 81/80 | |
2 | 43.8722 | 40/39 | |
3 | 65.8083 | 27/26, 28/27 | |
4 | 87.7444 | ||
5 | 109.6805 | 49/46, 16/15 | |
6 | 131.6166 | 41/38 | |
7 | 153.5527 | 59/54, 18/11 | |
8 | 175.4888 | ||
9 | 197.4248 | 65/58 | |
10 | 219.3609 | 42/37 | |
11 | 241.297 | (23/20) | |
12 | 263.2331 | 7/6 | |
13 | 285.1692 | ||
14 | 307.1053 | 117/98 | |
15 | 329.0414 | 52/43 | |
16 | 350.9775 | 60/49, 49/40 | |
17 | 372.9136 | 129/104 | |
18 | 394.8497 | 49/39 | |
19 | 416.7858 | 14/11 | |
20 | 438.7219 | 9/7 | |
21 | 460.6580 | (30/23) | |
22 | 482.5941 | 37/28 | |
23 | 504.5302 | 87/65 | pseudo-4/3 |
24 | 526.4663 | 61/45 | |
25 | 548.4023 | 81/59 | |
26 | 570.3384 | 57/41 | |
27 | 592.2745 | 69/49 | |
28 | 614.2106 | 10/7 | |
29 | 636.1467 | 13/9 | |
30 | 658.0828 | 117/80 | |
31 | 680.0189 | 40/27 | |
32 | 701.9550 | exact 3/2 | just perfect fifth |
33 | 723.8911 | 243/160 | |
34 | 745.8372 | 20/13 | |
35 | 766.7633 | 81/52, 14/9 | |
36 | 790.6994 | ||
37 | 811.6355 | 147/92, 8/5 | |
38 | 833.5716 | 123/76 | |
39 | 855.5077 | 59/36, 18/11 | |
40 | 877.4438 | ||
41 | 899.3798 | 195/116 | |
42 | 922.3159 | 63/37 | |
43 | 943.252 | 69/40 | |
44 | 965.1881 | 7/4 | |
45 | 987.1242 | ||
46 | 1009.0603 | 351/196 | |
47 | 1030.9964 | 78/43 | |
48 | 1052.9325 | 90/49, 147/80 | |
49 | 1076.8686 | 387/208 | |
50 | 1096.847 | 147/78 | |
51 | 1118.7408 | 21/11 | |
52 | 1140.6769 | 27/14 | |
53 | 1162.613 | 45/23 | |
54 | 1184.5451 | 111/56 | |
55 | 1206.4852 | 261/130 | pseudo-2/1 |
56 | 1228.4213 | 61/30 | |
57 | 1250.3575 | 243/118 | |
58 | 1272.2934 | 171/82 | |
59 | 1294.2395 | 207/98 | |
60 | 1316.1656 | 15/7 | |
61 | 1338.1017 | 13/6 | |
62 | 1360.0378 | 351/160 | |
63 | 1381.9739 | 20/9 | |
64 | 1403.91 | exact 9/4 |