7L 11s: Difference between revisions
Jump to navigation
Jump to search
Wanted page (20 links) |
m == Intervals == {{MOS intervals}} |
||
Line 3: | Line 3: | ||
== Modes == | == Modes == | ||
{{MOS modes}} | {{MOS modes}} | ||
== Intervals == | |||
{{MOS intervals}} | |||
== Scale tree == | == Scale tree == | ||
{{Scale tree}} | {{Scale tree}} | ||
{{stub}} |
Revision as of 01:36, 16 December 2024
↖ 6L 10s | ↑ 7L 10s | 8L 10s ↗ |
← 6L 11s | 7L 11s | 8L 11s → |
↙ 6L 12s | ↓ 7L 12s | 8L 12s ↘ |
┌╥┬╥┬┬╥┬╥┬┬╥┬╥┬┬╥┬┬┐ │║│║││║│║││║│║││║│││ ││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
ssLssLsLssLsLssLsL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
7L 11s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 11 small steps, repeating every octave. 7L 11s is a grandchild scale of 4L 3s, expanding it by 11 tones. Generators that produce this scale range from 333.3 ¢ to 342.9 ¢, or from 857.1 ¢ to 866.7 ¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
17|0 | 1 | LsLssLsLssLsLssLss |
16|1 | 6 | LsLssLsLssLssLsLss |
15|2 | 11 | LsLssLssLsLssLsLss |
14|3 | 16 | LssLsLssLsLssLsLss |
13|4 | 3 | LssLsLssLsLssLssLs |
12|5 | 8 | LssLsLssLssLsLssLs |
11|6 | 13 | LssLssLsLssLsLssLs |
10|7 | 18 | sLsLssLsLssLsLssLs |
9|8 | 5 | sLsLssLsLssLssLsLs |
8|9 | 10 | sLsLssLssLsLssLsLs |
7|10 | 15 | sLssLsLssLsLssLsLs |
6|11 | 2 | sLssLsLssLsLssLssL |
5|12 | 7 | sLssLsLssLssLsLssL |
4|13 | 12 | sLssLssLsLssLsLssL |
3|14 | 17 | ssLsLssLsLssLsLssL |
2|15 | 4 | ssLsLssLsLssLssLsL |
1|16 | 9 | ssLsLssLssLsLssLsL |
0|17 | 14 | ssLssLsLssLsLssLsL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 66.7 ¢ |
Major 1-mosstep | M1ms | L | 66.7 ¢ to 171.4 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 133.3 ¢ |
Major 2-mosstep | M2ms | L + s | 133.3 ¢ to 171.4 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 171.4 ¢ to 200.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 200.0 ¢ to 342.9 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 171.4 ¢ to 266.7 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 266.7 ¢ to 342.9 ¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | L + 4s | 171.4 ¢ to 333.3 ¢ |
Perfect 5-mosstep | P5ms | 2L + 3s | 333.3 ¢ to 342.9 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 342.9 ¢ to 400.0 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 400.0 ¢ to 514.3 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 2L + 5s | 342.9 ¢ to 466.7 ¢ |
Major 7-mosstep | M7ms | 3L + 4s | 466.7 ¢ to 514.3 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 514.3 ¢ to 533.3 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 533.3 ¢ to 685.7 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 514.3 ¢ to 600.0 ¢ |
Major 9-mosstep | M9ms | 4L + 5s | 600.0 ¢ to 685.7 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 3L + 7s | 514.3 ¢ to 666.7 ¢ |
Major 10-mosstep | M10ms | 4L + 6s | 666.7 ¢ to 685.7 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 685.7 ¢ to 733.3 ¢ |
Major 11-mosstep | M11ms | 5L + 6s | 733.3 ¢ to 857.1 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 4L + 8s | 685.7 ¢ to 800.0 ¢ |
Major 12-mosstep | M12ms | 5L + 7s | 800.0 ¢ to 857.1 ¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 5L + 8s | 857.1 ¢ to 866.7 ¢ |
Augmented 13-mosstep | A13ms | 6L + 7s | 866.7 ¢ to 1028.6 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 5L + 9s | 857.1 ¢ to 933.3 ¢ |
Major 14-mosstep | M14ms | 6L + 8s | 933.3 ¢ to 1028.6 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 5L + 10s | 857.1 ¢ to 1000.0 ¢ |
Major 15-mosstep | M15ms | 6L + 9s | 1000.0 ¢ to 1028.6 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 6L + 10s | 1028.6 ¢ to 1066.7 ¢ |
Major 16-mosstep | M16ms | 7L + 9s | 1066.7 ¢ to 1200.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 6L + 11s | 1028.6 ¢ to 1133.3 ¢ |
Major 17-mosstep | M17ms | 7L + 10s | 1133.3 ¢ to 1200.0 ¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 7L + 11s | 1200.0 ¢ |
Scale tree
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |